Skip to main content
Log in

Phase-isometries on the unit sphere of C(K)

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

We say that a map \(T: S_X\rightarrow S_Y\) between the unit spheres of two real normed-spaces X and Y is a phase-isometry if it satisfies

$$\begin{aligned} \left\{ \Vert T(x)+T(y)\Vert , \Vert T(x)-T(y)\Vert \right\} =\left\{ \Vert x+y\Vert , \Vert x-y\Vert \right\} \end{aligned}$$

for all \(x,y\in S_X\). In the present paper, we show that there is a phase function \(\varepsilon :S_X\rightarrow \{-1,1\}\) such that \(\varepsilon \cdot T\) is an isometry which can be extended a real linear isometry on X whenever T is surjective, \(X=C(K)\) and Y is an arbitrary Banach space. Additionally, if T is a surjective phase-isometry between the unit spheres of C(K) and \(C(\varOmega )\), where K and \(\varOmega\) are compact Hausdorff spaces, we prove that there are a homeomorphism \(\varphi : \varOmega \rightarrow K\) and a continuous unimodular function h on \(\varOmega\) such that

$$\begin{aligned} T(f)\in \{h\cdot f\circ \varphi ,-h\cdot f\circ \varphi \} \end{aligned}$$

for all \(f\in S_{C(K)}\). This also can be seen as a Banach-Stone type representation for phase-isometries in C(K) spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabello-Sánchez, J.: A reflection on Tingley’s problem and some applications. J. Math. Anal. Appl. 476(2), 319–336 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chevalier, G.: Wigner’s Theorem and Its Generalizations, pp. 429–475. Springer/Plénum publishers, New York (2007)

    Google Scholar 

  3. Cueto-Avellaneda, M., Peralta, A.M.: The Mazur-Ulam property for commutative von Neumann algebras. Linear Multilinear Algebra 68(2), 337–362 (2020)

    Article  MathSciNet  Google Scholar 

  4. Cueto-Avellaneda, M., Peralta, A.M.: On the Mazur-Ulam property for the space of Hilbert-space-valued continuous functions. J. Math. Anal. Appl. 479(1), 875–902 (2019)

    Article  MathSciNet  Google Scholar 

  5. Ding, G.G.: On isometric extension problem between two unit spheres. Sci. China Ser. A 52, 2069–2083 (2009)

    Article  MathSciNet  Google Scholar 

  6. Fang, X.N., Wang, J.H.: On extension of isometries between the unit spheres of normed space \(E\) and \(C(\Omega )\). Acta Math. Sin. Engl. Ser. 22, 1819–1824 (2006)

    Article  MathSciNet  Google Scholar 

  7. Fernández-Polo, F.J., Jordá, E., Peralta, A.M.: Tingley’s problem for \(p\)-Schatten von Neumann classes, to appear in J. Spectr. Theory. arXiv:1803.00763

  8. Huang, X., Tan, D.: Wigner’s theroem in atomic Lp-space (p > 0). Publ. Math. Debr. 92(3–4), 411–418 (2018)

    Article  Google Scholar 

  9. Iliśevič, D., Turnšek, A.: On Wigner’s theorem in strictly convex normed spaces, Publ. Math. Debr., to appear

  10. Iliśevič, D., Omladič, M., Turnšek, A.: From Mazur-Ulam to Wigner, arXiv:2005.02949

  11. Jin, H., Huang, X.: Extension of phase-isometries between the unit spheres of atomic Lp-spaces for p > 0. Bull. Korean Math. Soc. 56(6), 1377–1384 (2019)

    MathSciNet  Google Scholar 

  12. Kadets, V., Zavarzina, O.: Generalized-lush spaces revisited. Ann. Funct. Anal. 11(2), 244–258 (2020)

    Article  MathSciNet  Google Scholar 

  13. Liu, R.: On extension of isometries between unit spheres of \({\cal{L}}^{\infty}\)-type space and a Banach space \(E\). J. Math. Anal. Appl. 333, 959–970 (2007)

    Article  MathSciNet  Google Scholar 

  14. Maksa, G., Páles, Z.: Wigner’s theorem revisited. Publ. Math. Debr. 81(1–2), 243–249 (2012)

    Article  MathSciNet  Google Scholar 

  15. Mori, M., Ozawa, N.: Mankiewicz’s theorem and the Mazur-Ulam property for \(C^*\)-algebras. Stud. Math. 250, 265–281 (2020)

    Article  MathSciNet  Google Scholar 

  16. Peralta, A.M.: A survey on Tingley’s problem for operator algebras. Acta Sci. Math. (Szeged) 84, 81–123 (2018)

    Article  MathSciNet  Google Scholar 

  17. Peralta, A.M.: On the extension of surjective isometries whose domain is the unit sphere of a space of compact operators, arXiv:2005.11987

  18. Tan, D., Huang, X.: Phase-isometries on real normed spaces. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2020.124058

    Article  MathSciNet  Google Scholar 

  19. D. Tan, X. Huang.: The Wigner property for CL-spaces and finite-dimensional polyhedral Banach spaces, preprint

  20. Tan, D., Huang, X., Liu, R.: Generalized-lush spaces and the Mazur-Ulam property. Stud. Math. 219, 139–153 (2013)

    Article  MathSciNet  Google Scholar 

  21. Tan, D., Xiong, X.: A note on Tingley’s problem and Wigner’s theorem in the unit sphere of \({\mathcal{L}}^\infty (\Gamma )\)-type spaces. Quaest. Math. (2020). https://doi.org/10.2989/16073606.2020.1783010

    Article  Google Scholar 

  22. Tanaka, R.: A further property of spherical isometries. Bull. Aust. Math. Soc. 90, 304–310 (2014)

    Article  MathSciNet  Google Scholar 

  23. Tingley, D.: Isometries of the unit sphere. Geom. Dedic. 22, 371–378 (1987)

    Article  MathSciNet  Google Scholar 

  24. Wang, R., Bugajewski, D.: On normed spaces with the Wigner Property. Ann. Funct. Anal. 11, 523–539 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the Natural Science Foundation of China (Grant Nos. 11371201, 11201337, 11201338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongni Tan.

Additional information

Communicated by Jesús Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Gao, Y. Phase-isometries on the unit sphere of C(K). Ann. Funct. Anal. 12, 15 (2021). https://doi.org/10.1007/s43034-020-00099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-020-00099-1

Keywords

Mathematics Subject Classification

Navigation