Skip to main content
Log in

Effect of concentration inhomogeneity on the pulsating instability of hydrogen–oxygen detonations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

One-dimensional, unsteady gaseous detonation propagation in a non-homogeneous medium is investigated numerically using the reactive, compressible Navier–Stokes equations with detailed chemistry. The effect of concentration inhomogeneity on the pulsating mode is modeled by a sinusoidal distribution of H2 mole fraction in a H2–O2 mixture. The mixture inhomogeneity, varied by changing the disturbance frequency and amplitude, has significant effects on the pulsating behavior of the detonation due to the interaction of the leading shock with the local gradient. Initially exhibiting a four-period pulsation, the detonation wave entering a non-homogeneous medium can adapt and re-establish into a new propagation mode. For a fixed, large-amplitude sinusoidal disturbance, the period-doubling limit cycle is prone to be destroyed, resulting in a chaotic mode for the propagating detonation front in the non-homogeneous mixture; lowering the disturbance frequency also favors a transition from a periodic pulsation to a chaotic one. When the disturbance amplitude decreases, the propagating detonation can transit quickly to a new pulsating behavior, which tends to be more regular. For a very small amplitude of inhomogeneous variation, it is found that the frequency corresponding to the wavelength close to that of the intrinsic pulsation in the uniform mixture makes the original four-period mode become a double-period mode; for a frequency less than this value, the double-period mode is prone to become more unstable. Consequently, this demonstrates that inhomogeneity could have a positive effect on stabilizing a pulsating detonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008) https://doi.org/10.1017/CBO9780511754708

    Book  Google Scholar 

  2. Clavin, P., Searby, G.: Combustion Waves and Fronts in Flow. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316162453.003

    Book  MATH  Google Scholar 

  3. McVey, J.B., Toong, T.Y.: Mechanism of instabilities of exothermic hypersonic blunt body flows. Combust. Sci. Tech. 3, 63–76 (1971). https://doi.org/10.1080/00102207108952273

    Article  Google Scholar 

  4. Clavin, P., Williams, F.A.: Dynamics of planar gaseous detonations near Chapman–Jouguet conditions for small heat release. Combust. Theor. Model. 6, 127–139 (2002). https://doi.org/10.1088/1364-7830/6/1/307

    Article  MathSciNet  MATH  Google Scholar 

  5. Erpenbeck, J.J.: Stability of steady-state equilibrium detonations. Phys. Fluids 5, 604–614 (1962). https://doi.org/10.1063/1.1706664

    Article  MathSciNet  Google Scholar 

  6. Sharpe, G.J., Falle, S.A.E.G.: One-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 455, 1203–1214 (1999). https://doi.org/10.1098/rspa.1999.0355

    Article  MathSciNet  MATH  Google Scholar 

  7. Short, M., Sharpe, G.J.: Pulsating instability of detonations with a two-step chain-branching reaction model: Theory and numerics. Combust. Theor. Model. 7, 401–416 (2003). https://doi.org/10.1088/1364-7830/7/2/311

    Article  MathSciNet  MATH  Google Scholar 

  8. Radulescu, M.I., Ng, H.D., Lee, J.H.S., Varatharajan, B.: The effect of argon dilution on the stability of acetylene-oxygen detonations. Proc. Combust. Inst. 29, 2825–2831 (2002). https://doi.org/10.1016/S1540-7489(02)80345-5

    Article  Google Scholar 

  9. Yungster, S., Radhakrishan, K.: Pulsating one-dimensional detonations in hydrogen–air mixtures. Combust. Theor. Model. 8, 745–770 (2004). https://doi.org/10.1088/1364-7830/8/4/005

    Article  Google Scholar 

  10. Thomas, G.O., Sutton, P., Edwards, D.H.: The behavior of detonation waves at concentration gradients. Combust. Flame. 84, 312–322 (1991). https://doi.org/10.1016/0010-2180(91)90008-Y

    Article  Google Scholar 

  11. Kuznetsov, M.S., Alekseev, V.I., Dorofeev, S.B., Matsukov, I.D., Boccio, J.L.: Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures. Symposium (International) on Combustion 27(2), 2241–2247 (1998). https://doi.org/10.1016/S0082-0784(98)80073-8

  12. Ishii, K., Kojima, M.: Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves 17(1–2), 95–102 (2007). https://doi.org/10.1007/s00193-007-0093-y

    Article  Google Scholar 

  13. Boeck, L.R., Berger, F.M., Hasslberger, J., Sattelmayer, T.: Detonation propagation in hydrogen–air mixtures with transverse concentration gradients. Shock Waves 26(2), 181–192 (2016). https://doi.org/10.1007/s00193-015-0598-8

    Article  Google Scholar 

  14. Calhoon, W., Sinha, N.: Detonation wave propagation in concentration gradients. 43th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2005-1167 (2005). https://doi.org/10.2514/6.2005-1167

  15. Kessler, D., Gamezo, V., Oran, E.: Wave structures and irregular detonation cells in methane-air mixtures with concentration gradients. 49th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, AIAA Paper 2011-798 (2011). https://doi.org/10.2514/6.2011-798

  16. Ettner, F., Vollmer, K.G., Sattelmayer, T.: Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves 23(3), 201–206 (2013). https://doi.org/10.1007/s00193-012-0385-8

    Article  Google Scholar 

  17. Oran, E.S., Jones, D.A., Sichel, M.: Numerical simulations of detonation transmission. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 436, 267–297 (1992). https://doi.org/10.1098/rspa.1992.0018

    Article  Google Scholar 

  18. Mi, X.C., Timofeev, E.V., Higgins, A.J.: Effect of spatial discretization of energy on detonation wave propagation. J. Fluid Mech. 817, 306–338 (2016). https://doi.org/10.1017/jfm.2017.81

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, W.H., Wang, C., Law, C.K.: Pulsation in one-dimensional H2–O2 detonation with detailed reaction mechanism. Combust. Flame 200, 242–261 (2019). https://doi.org/10.1016/j.combustflame.2018.11.024

    Article  Google Scholar 

  20. Wang, C., Shu, C.W., Han, W.H., Ning, J.G.: High resolution WENO simulation of 3D detonation waves. Combust. Flame 160, 447–462 (2013). https://doi.org/10.1016/j.combustflame.2012.10.002

    Article  Google Scholar 

  21. He, L.T., Lee, J.H.S.: The dynamical limit of one-dimensional detonations. Phys. Fluids 7, 1151–1158 (1995). https://doi.org/10.1063/1.868556

    Article  MATH  Google Scholar 

  22. Austin, J.M., Pintgen, F., Shepherd, J.E.: Reaction zones in highly unstable detonations. Proc. Combust. Inst. 30, 1849–1857 (2005). https://doi.org/10.1016/j.proci.2004.08.157

    Article  Google Scholar 

  23. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Technical Report, SAND89-8009B. Sandia National Laboratories (1992). https://doi.org/10.2172/481621

  24. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A., Moffat H.K.: A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Sandia National Laboratories Report SAND86-8246. 13, 80401–1887 (1986)

  25. Sánchez, A.L., Williams, F.A.: Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energ. Combust. 41, 1–55 (2014). https://doi.org/10.1016/j.pecs.2013.10.002

    Article  Google Scholar 

  26. Han, W.H., Ma, W.J., Qian, C.G., Wen, J., Wang, C.: Bifurcation of pulsation instability in one-dimensional H2–O2 detonation with detailed reaction mechanism. Phys. Rev. Fluids 4(10), 103202 (2019). https://doi.org/10.1103/physrevfluids.4.103202

    Article  Google Scholar 

Download references

Acknowledgements

The research was sponsored by the National Natural Science Foundation of China under Grants 11972090,11732003, and U1830139, the Science and Technology on Transient Impact Laboratory Foundation (Grant No. 6142606182104), and the State Key Laboratory of Explosion Science and Technology. WH was in addition supported by a European Commission for the Marie Curie International Fellowships Grant “TurbDDT (Grant No. 793072).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Wang or W. H. Han.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on work that was presented at the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Beijing, China, July 28–August 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W.J., Wang, C. & Han, W.H. Effect of concentration inhomogeneity on the pulsating instability of hydrogen–oxygen detonations. Shock Waves 30, 703–711 (2020). https://doi.org/10.1007/s00193-020-00976-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00976-7

Keywords

Navigation