Skip to main content
Log in

Can spinosad be effective for the integrated management of Anastrepha ludens (Tephritidae) in soil and fallen fruit, and be compatible with the parasitoid Diachasmimorpha longicaudata (Braconidae)?

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Tephritid fruit flies are susceptible to insecticide treatments when leaving infested fruit to pupate in the soil and when emerging as adults. Laboratory experiments involved placing third instar larvae of the Mexican fruit fly, Anastrepha ludens on sand treated with the naturally-derived insecticide spinosad (SpinTor 12SC). Negative correlations were detected between the concentration of spinosad and pupation and adult emergence. Treatment of pupae significantly reduced adult longevity, which could impact pest reproduction as adult flies require approximately two weeks to reach sexual maturity. Brief immersion of naturally infested oranges in 33–66 ppm spinosad solution also significantly reduced adult emergence. Exposure to spinosad-treated sand (33 ppm) did not adversely affect the foraging behavior or mortality of the braconid parasitoid Diachasmimorpha longicaudata. We conclude that effective control of A. ludens in soil with spinosad is possible but will likely require application of high concentrations of the insecticide, which may not be economically viable under conventional fruit production schemes. In the case of organic orchards surrounded by wild hosts that harbor large fly populations, targeted spinosad soil applications might be desirable as fly numbers could be significantly reduced without harming parasitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullahi, G., Obeng-Ofori, D., Afreh-Nuamah, K., & Billah, M. K. (2020). Acute and residual concentration-dependent toxicities of some selected insecticides to adult Bactrocera invadens drew, Tsuruta and white (Diptera: Tephritidae). Journal of Basic and Applied Zoology, 81, 18.

    Article  Google Scholar 

  • Aitkin, M. A., Aitkin, M., Francis, B., & Hinde, J. (2005). Statistical modelling in GLIM 4 Vol. 32. Oxford, UK: Oxford University press.

  • Aluja, M. (1994). Bionomics and management of Anastrepha. Annual Review of Entomology, 39, 155–178.

    Article  Google Scholar 

  • Aluja, M., & Birke, A. (1993). Habitat use by Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Annals of the Entomological Society of America, 86, 799–812.

    Article  Google Scholar 

  • Aluja, M., & Mangan, R. L. (2008). Fruit fly (Diptera: Tephritidae) host status determination: Critical conceptual, methodological, and regulatory considerations. Annual Review of Entomology, 53, 473–502.

    Article  CAS  PubMed  Google Scholar 

  • Aluja, M., & Rull, J. (2009). Managing pestiferous fruit flies (Diptera: Tephritidae) through environmental manipulation. In M. Aluja, T. C. Leskey, & C. Vincent (Eds.), Biorational tree fruit pest management (pp. 171–213). Wallingford, UK: CAB International.

    Chapter  Google Scholar 

  • Aluja, M., Sivinski, J., Rull, J., & Hodgson, P. J. (2005). Behavior and predation of fruit fly larvae (Anastrepha spp.) (Diptera: Tephritidae) after exiting fruit in four types of habitats in tropical Veracruz, Mexico. Environmental Entomology, 34, 1507–1516.

    Article  Google Scholar 

  • Aluja, M., Leskey, T. C., & Vincent, C. (2009). Biorational tree-fruit pest management. Wallingford, UK: CAB International.

    Book  Google Scholar 

  • Bernardi, D., Nondillo, A., Baronio, C. A., Bortoli, L. C., Junior, R. M., Treptow, R. C. B., Geisler, F. C. S., Neitzke, C. G., Nava, D. E., & Botton, M. (2019). Side effects of toxic bait formulations on Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Scientific Reports, 9, 12550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biondi, A., Zappalà, L., Stark, J. D., & Desneux, N. (2013). Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One, 8, e76548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birke, A., Guillén, L., Midgarden, D., & Aluja, M. (2013). Fruit flies, Anastrepha ludens (Loew), A. obliqua (Macquart) and A. grandis (Macquart) (Diptera: Tephritidae): Three pestiferous tropical fruit flies that could potentially expand their range to temperate areas. In J. E. Peña & M. Wysoki (Eds.), Emerging invasive pests of agricultural crops (pp. 192–213). Wallingford, UK: CAB International.

    Chapter  Google Scholar 

  • Birke, A., Acosta, E., & Aluja, M. (2015). Limits to the host range of the highly polyphagous tephritid fruit fly Anastrepha ludens in its natural habitat. Bulletin of Entomological Research, 105, 743–753.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., Zhou, A., Chen, R., Zeng, L., & Xu, Y. (2012). Predation of the oriental fruit fly, Bactrocera dorsalis puparia by the red imported fire ant, Solenopsis invicta: Role of host olfactory cues and soil depth. Biocontrol Science and Technology, 22, 551–557.

    Article  Google Scholar 

  • Croft, B. A. (1990). Arthropod biological control agents and pesticides. New York: John Wiley.

    Google Scholar 

  • De Nardo, E. A., & Grewal, P. S. (2003). Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Science and Technology, 13, 441–448.

    Article  Google Scholar 

  • Dhillon, M. K., Singh, R., Naresh, J. S., & Sharma, H. C. (2005). The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. Journal of Insect Science, 5, 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchet, C., Coutellec, M. A., Franquet, E., Lagneau, C., & Lagadic, L. (2010). Population-level effects of spinosad and Bacillus thuringiensis israelensis in Daphnia pulex and Daphnia magna: Comparison of laboratory and field microcosm exposure conditions. Ecotoxicology, 19, 1224–1237.

    Article  CAS  PubMed  Google Scholar 

  • Enkerlin, E. R. (2005). Impact of fruit fly control programmes using the sterile insect technique. In V. A. Dyck, J. Hendrichs, & A. S. Robinson (Eds.), Sterile insect technique: Principles and practice in area-wide integrated pest management (pp. 651–676). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Fernandes, K. M., Tomé, H. V. V., Miranda, F. R., Gonçalves, W. G., Pascini, T. V., Serrão, J. E., & Martins, G. F. (2019). Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity. Chemosphere, 221, 464–470.

    Article  CAS  PubMed  Google Scholar 

  • Flores, S., Gomez, L. E., & Montoya, P. (2011). Residual control and lethal concentrations of GF-120 (spinosad) for Anastrepha spp. (Diptera: Tephritidae). Journal of Economic Entomology, 104, 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  • Geng, C., Watson, G. B., & Sparks, T. C. (2013). Nicotinic acetylcholine receptors as spinosyn targets for insect pest management. Advances in Insect Physiology, 44, 101–210.

    Article  Google Scholar 

  • Guillem-Amat, A., Ureña, E., López-Errasquín, E., Navarro-Llopis, V., Batterham, P., Sánchez, L., Perry, T., Hernández-Crespo, P., & Ortego, F. (2020). Functional characterization and fitness cost of spinosad-resistant alleles in Ceratitis capitata. Journal of Pest Science, 93, 1043–1058.

    Article  Google Scholar 

  • Hodgson, P. J., Sivinski, J., Quintero, G., & Aluja, M. (1998). Depth of pupation and survival of fruit fly (Anastrepha spp.: Tephritidae) pupae in a range of agricultural habitats. Environmental Entomology, 27, 1310–1314.

    Article  Google Scholar 

  • Jamovi (2019). Jamovi project version 0.9. Statistical Software. https://www.jamovi.org/about.html. Accessed 27 May 2020.

  • Kim, S. Y., Ahn, H. G., Ha, P. J., Lim, U. T., & Lee, J. H. (2018). Toxicities of 26 pesticides against 10 biological control species. Journal of Asia-Pacific Entomology, 21, 1–8.

    Article  Google Scholar 

  • Klungness, L. M., Jang, E. B., Mau, R. F., Vargas, R. I., Sugano, J. S., & Fujitani, E. (2005). New sanitation techniques for controlling tephritid fruit flies (Diptera: Tephritidae) in Hawaii. Journal of Applied Sciences and Environmental Management, 9, 5–14.

    Article  Google Scholar 

  • Larson, J. L., Redmond, C. T., & Potter, D. A. (2012). Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Management Science, 68, 740–748.

    Article  CAS  PubMed  Google Scholar 

  • Laznik, Ž., & Trdan, S. (2014). The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science, 70, 784–789.

    Article  CAS  PubMed  Google Scholar 

  • Lefkaditis, F. G., Arapis, G. D., Athanasiou, C. G., & Kavallieratos, N. G. (2017). Spinosad and spinetoram disrupt the structure and the abundance of ground-dwelling arthropod communities in herbaceous fields. International Journal of Pest Management, 63, 54–73.

    Article  Google Scholar 

  • López, M., Aluja, M., & Sivinski, J. (1999). Hymenopterous larval-pupal and pupal parasitoids of Anastrepha flies (Diptera: Tephritidae) in Mexico. Biological Control, 15, 119–129.

    Article  Google Scholar 

  • McCoy, C. W., Stuart, R. J., Jackson, I., Fojtik, J., & Hoyte, A. (2001). Soil surface applications of chemicals for the control of neonate Diaprepes abbreviatus (Coleoptera: Curculionidae) and their effect on ant predators. Florida Entomologist, 84, 327–327.

    Article  CAS  Google Scholar 

  • Mochi, D. A., Monteiro, A. C., De Bortoli, S. A., Dória, H. O., & Barbosa, J. C. (2006). Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.)(Diptera: Tephritidae) in soil with different pesticides. Neotropical Entomology, 35, 382–389.

    Article  CAS  PubMed  Google Scholar 

  • Montoya, P., Liedo, P., Benrey, B., Barrera, J. F., Cancino, J., & Aluja, M. (2000). Functional response and superparasitism by Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid of fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America, 93, 47–54.

    Article  Google Scholar 

  • Montoya, P., Cancino, J., Zenil, M., Santiago, G., & Gutierrez, J. M. (2007). The augmentative biological control component in the Mexican National Campaign against Anastrepha spp. fruit flies. In M. J. B. Vreysen, A. S. Robinson, & J. Hendricks (Eds.), Area-wide control of insect pests: From research to field implementation (pp. 661–670). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Morris, O. N. (1977). Compatibility of 27 chemical insecticides with Bacillus thuringiensis var. kurstaki. Canadian Entomologist, 109, 855–864.

    Article  CAS  Google Scholar 

  • NOSB (2020). National Organic Standards Board. USDA Agricultural Marketing Service. Spinosad - Crops. https://www.ams.usda.gov/sites/default/files/media/ Spinosad%20report%202002.pdf. .

  • Pascacio-Villafán, C., Williams, T., Sivinski, J., Birke, A., & Aluja, M. (2015). Costly nutritious diets do not necessarily translate into better performance of artificially reared fruit flies (Diptera: Tephritidae). Journal of Economic Entomology, 108, 53–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potter, D. A. (1994). Effects of pesticides on beneficial invertebrates in turf. In A. R. Leslie (Ed.), Handbook of integrated pest management for turf and ornamentals (pp. 63–65). Boca Raton: CRC Press.

    Google Scholar 

  • Purcell, M. F., & Schroeder, W. J. (1996). Effect of silwet L-77 and diazinon on three tephritid fruit flies (Diptera: Tephritidae) and associated endoparasitoids. Journal of Economic Entomology, 89, 1566–1570.

    Article  Google Scholar 

  • Rovesti, L., & Deseö, K. V. (1990). Compatibility of chemical pesticides with the entomopathogenic nematodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica, 36, 237–245.

    Article  Google Scholar 

  • Ruiz, L., Flores, S., Cancino, J., Arredondo, J., Valle, J., Díaz-Fleischer, F., & Williams, T. (2008). Lethal and sublethal effects of spinosad-based GF-120 bait on the tephritid parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Biological Control, 44, 296–304.

    Article  CAS  Google Scholar 

  • Santos, V. S. V., & Pereira, B. B. (2020). Properties, toxicity and current applications of the biolarvicide spinosad. Journal of Toxicology and Environmental Health B, 23, 13–26.

    Article  CAS  Google Scholar 

  • Saul, S. H., Tsuda, D., & Wong, T. T. (1983). Laboratory and field trials of soil applications of methoprene and other insecticides for control of the Mediterranean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology, 76, 174–177.

    Article  CAS  Google Scholar 

  • Schläppi, D., Kettler, N., Straub, L., Glauser, G., & Neumann, P. (2020). Long-term effects of neonicotinoid insecticides on ants. Communications Biology, 3, 335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J., & Vargas, R. (Eds.). (2014). Trapping and the detection, control and regulation of tephritid fruit flies: Lures, area-wide programs and trade implications. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Stark, J. D., & Vargas, R. I. (2003). Demographic changes in Daphnia pulex (Leydig) after exposure to the insecticides spinosad and diazinon. Ecotoxicology and Environmental Safety, 56, 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Stark, J. D., & Vargas, R. (2009). An evaluation of alternative insecticides to diazinon for control of tephritid fruit flies (Diptera: Tephritidae) in soil. Journal of Economic Entomology, 102, 139–143.

    Article  PubMed  Google Scholar 

  • Stark, J. D., Vargas, R., & Miller, N. (2004). Toxicity of spinosad in protein bait to three economically important tephritid fruit fly species (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae). Journal of Economic Entomology, 97, 911–915.

    Article  CAS  PubMed  Google Scholar 

  • Stark, J. D., Vargas, R. I., Souder, S. L., Fox, A. J., Smith, T. R., & Mackey, B. R. (2013). A comparison of the bioinsecticide, spinosad, the semi-synthetic insecticide, spinetoram and synthetic insecticides as soil drenches for control of tephritid fruit flies. Biopesticides International, 9, 120–126.

    Google Scholar 

  • Stark, J. D., Vargas, R. I., Souder, S. K., Fox, A. J., Smith, T. R., Leblanc, L., et al. (2014). Simulated field applications of insecticide soil drenches for control of tephritid fruit flies. Biopesticides International, 10, 136–142.

    Google Scholar 

  • Thompson, G. D., Dutton, R., & Sparks, T. C. (2000). Spinosad - a case study: An example from a natural products discovery programme. Pest Management Science, 56, 696–702.

    Article  CAS  Google Scholar 

  • Toledo, J., Ibarra, J. E., Liedo, P., Gómez, A., Rasgado, M. A., & Williams, T. (2005). Infection of Anastrepha ludens (Diptera: Tephritidae) larvae by Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) under laboratory and field conditions. Biocontrol Science and Technology, 15, 627–634.

    Article  Google Scholar 

  • Urbaneja, A., Marí, F. G., Tortosa, D., Navarro, C., Vanaclocha, P., Bargues, L., & Castañera, P. (2006). Influence of ground predators on the survival of the Mediterranean fruit fly pupae, Ceratitis capitata, in Spanish citrus orchards. BioControl, 51, 611–626.

    Article  Google Scholar 

  • Vélez, M., Barbosa, W. F., Quintero, J., Chediak, M., & Guedes, R. N. C. (2017). Deltamethrin-and spinosad-mediated survival, activity and avoidance of the grain weevils Sitophilus granarius and S. zeamais. Journal of Stored Products Research, 74, 56–65.

    Article  Google Scholar 

  • Voudouris, C. C., Mavridis, K., Kalaitzaki, A., Skouras, P. J., Kati, A. N., Eliopoulos, P. A., Vontas, J., & Margaritopoulos, J. T. (2018). Susceptibility of Ceratitis capitata to deltamethrin and spinosad in Greece. Journal of Pest Science, 91, 861–871.

    Article  Google Scholar 

  • Wang, X. G., Jarjees, E. A., McGraw, B. K., Bokonon-Ganta, A. H., Messing, R. H., & Johnson, M. W. (2005). Effects of spinosad-based fruit fly bait GF-120 on tephritid fruit fly and aphid parasitoids. Biological Control, 35, 155–162.

    Article  CAS  Google Scholar 

  • Wang, D., Gong, P., Li, M., Qiu, X., & Wang, K. (2009). Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Management Science, 65, 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Wang, Y. M., Liu, H. Y., Xin, Z., & Xue, M. (2013). Lethal and sublethal effects of spinosad on Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology, 106, 1825–1831.

    Article  CAS  PubMed  Google Scholar 

  • Williams, T., Valle, J., & Viñuela, E. (2003). Is the naturally-derived insecticide spinosad compatible with insect natural enemies? Biocontrol Science and Technology, 13, 459–475.

    Article  Google Scholar 

  • Williams, T., Arredondo-Bernal, H. C., & Rodríguez-del-Bosque, L. A. (2013). Biological pest control in Mexico. Annual Review of Entomology, 58, 119–140.

    Article  CAS  PubMed  Google Scholar 

  • Yee, W. L., & Alston, D. G. (2006). Effects of spinosad, spinosad bait, and chloronicotinyl insecticides on mortality and control of adult and larval western cherry fruit fly (Diptera: Tephritidae). Journal of Economic Entomology, 99, 1722–1732.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X. H., Wu, Q. J., Li, X. F., Zhang, Y. J., & Xu, B. Y. (2008). Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Protection, 27, 1385–1391.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jovita Martínez-Tlapa for supplying biological material and Alejandra Cruz-Alarcón and Dulce Maribel Díaz-Tolentino for technical assistance. The study was funded by the Campaña Nacional Contra Moscas de la Fruta (DGSV-SENASICA-SADER) administered by the Instituto Interamericano de Cooperación para la Agricultura (IICA), grant IICA-INECOL – 10388 – 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Williams.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, T., Mercado, G. & Aluja, M. Can spinosad be effective for the integrated management of Anastrepha ludens (Tephritidae) in soil and fallen fruit, and be compatible with the parasitoid Diachasmimorpha longicaudata (Braconidae)?. Phytoparasitica 49, 73–82 (2021). https://doi.org/10.1007/s12600-020-00869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00869-6

Keywords

Navigation