Skip to main content

Advertisement

Log in

Dyskinesia is Closely Associated with Synchronization of Theta Oscillatory Activity Between the Substantia Nigra Pars Reticulata and Motor Cortex in the Off L-dopa State in Rats

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Excessive theta (θ) frequency oscillation and synchronization in the basal ganglia (BG) has been reported in elderly parkinsonian patients and animal models of levodopa (L-dopa)-induced dyskinesia (LID), particularly the θ oscillation recorded during periods when L-dopa is withdrawn (the off L-dopa state). To gain insight into processes underlying this activity, we explored the relationship between primary motor cortex (M1) oscillatory activity and BG output in LID. We recorded local field potentials in the substantia nigra pars reticulata (SNr) and M1 of awake, inattentive resting rats before and after L-dopa priming in Sham control, Parkinson disease model, and LID model groups. We found that chronic L-dopa increased θ synchronization and information flow between the SNr and M1 in off L-dopa state LID rats, with a SNr-to-M1 flow directionality. Compared with the on state, θ oscillational activity (θ synchronization and information flow) during the off state were more closely associated with abnormal involuntary movements. Our findings indicate that θ oscillation in M1 may be consequent to abnormal synchronous discharges in the BG and support the notion that M1 θ oscillation may participate in the induction of dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord 2007, 22: 2409–2417.

    Article  PubMed  Google Scholar 

  2. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord 2006, 21: 1844–1850.

    Article  PubMed  Google Scholar 

  3. Wang Q, Zhang W. Maladaptive synaptic plasticity in L-DOPA-induced dyskinesia. Front Neural Circuits 2016, 10: 105.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cenci MA. Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 2007, 30: 236–243.

    Article  CAS  PubMed  Google Scholar 

  5. Mela F, Marti M, Bido S, Cenci MA, Morari M. In vivo evidence for a differential contribution of striatal and nigral D1 and D2 receptors to l-DOPA induced dyskinesia and the accompanying surge of nigral amino acid levels. Neurobiol Dis 2012, 45: 573–582.

    Article  CAS  PubMed  Google Scholar 

  6. Fieblinger T, Sebastianutto I, Alcacer C, Bimpisidis Z, Maslava N, Sandberg S, et al. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the Parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J Neurosci 2014, 34: 4728–4740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Alonso-Frech F, Zamarbide I, Alegre M, Rodriguez-Oroz MC, Guridi J, Manrique M, et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 2006, 129: 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  8. Foffani G, Ardolino G, Meda B, Egidi M, Rampini P, Caputo E, et al. Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias. J Neurol Neurosurg Psychiatry 2005, 76: 426–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paolone G, Brugnoli A, Arcuri L, Mercatelli D, Morari M. Eltoprazine prevents levodopa-induced dyskinesias by reducing striatal glutamate and direct pathway activity. Mov Disord 2015, 30: 1728–1738.

    Article  CAS  PubMed  Google Scholar 

  10. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003, 126: 2597–2608.

    Article  PubMed  Google Scholar 

  11. Alegre M, Lopez-Azcarate J, Alonso-Frech F, Rodriguez-Oroz MC, Valencia M, Guridi J, et al. Subthalamic activity during diphasic dyskinesias in Parkinson’s disease. Mov Disord 2012, 27: 1178–1181.

    Article  PubMed  Google Scholar 

  12. Lofredi R, Neumann WJ, Bock A, Horn A, Huebl J, Siegert S, et al. Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease. Elife 2018, 7:e31895.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Priori A, Foffani G, Pesenti A, Tamma F, Bianchi AM, Pellegrini M, et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 2004, 189: 369–379.

    Article  CAS  PubMed  Google Scholar 

  14. Alam M, Rumpel R, Jin X, von Wrangel C, Tschirner SK, Krauss JK, et al. Altered somatosensory cortex neuronal activity in a rat model of Parkinson’s disease and levodopa-induced dyskinesias. Exp Neurol 2017, 294: 19–31.

    Article  PubMed  Google Scholar 

  15. Alam M, Capelle HH, Schwabe K, Krauss JK. Effect of deep brain stimulation on levodopa-induced dyskinesias and striatal oscillatory local field potentials in a rat model of Parkinson’s disease. Brain Stimul 2014, 7: 13–20.

    Article  CAS  PubMed  Google Scholar 

  16. Borgkvist A, Lieberman OJ, Sulzer D. Synaptic plasticity may underlie L-DOPA induced dyskinesia. Cur Opin Neurobiol 2018, 48: 71–78.

    Article  CAS  Google Scholar 

  17. Wu YR, Levy R, Ashby P, Tasker RR, Dostrovsky JO. Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Mov Disord 2001, 16: 208–216.

    Article  CAS  PubMed  Google Scholar 

  18. Oyama G, Foote KD, Jacobson CE, Velez-Lago F, Go C, Limotai N, et al. GPi and STN deep brain stimulation can suppress dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord 2012, 18: 814–818.

    Article  PubMed  Google Scholar 

  19. Angeli A, Akram H, Zacharia A, Limousin P, Hariz M, Zrinzo L, et al. Varying time-course of effects of high frequency stimulation of sub-regions of the globus pallidus in patients with parkinson’s disease. Parkinsonism Relat Disord 2015, 21: 597–602.

    Article  CAS  PubMed  Google Scholar 

  20. Halje P, Tamte M, Richter U, Mohammed M, Cenci MA, Petersson P. Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J Neurosci 2012, 32: 16541–16551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belic JJ, Halje P, Richter U, Petersson P, Hellgren Kotaleski J. Untangling Cortico-striatal connectivity and cross-frequency coupling in L-DOPA-induced dyskinesia. Front Syst Neurosci 2016, 10: 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dupre KB, Cruz AV, McCoy AJ, Delaville C, Gerber CM, Eyring KW, et al. Effects of L-dopa priming on cortical high beta and high gamma oscillatory activity in a rodent model of Parkinson’s disease. Neurobiol Dis 2016, 86: 1–15.

    Article  CAS  PubMed  Google Scholar 

  23. Salvade A, D’Angelo V, Di Giovanni G, Tinkhauser G, Sancesario G, Stadler C, et al. Distinct roles of cortical and pallidal beta and gamma frequencies in hemiparkinsonian and dyskinetic rats. Exp Neurol 2016, 275 Pt 1: 199–208.

    Article  PubMed  Google Scholar 

  24. Brazhnik E, Cruz AV, Avila I, Wahba MI, Novikov N, Ilieva NM, et al. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats. J Neurosci 2012, 32: 7869–7880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, et al. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trend Neurosci 1998, 21: 32–38.

    Article  CAS  PubMed  Google Scholar 

  26. Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in Parkinsonian rats. Brain 2007, 130: 1819–1833.

    Article  PubMed  Google Scholar 

  27. Ghiglieri V, Mineo D, Vannelli A, Cacace F, Mancini M, Pendolino V, et al. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol Dis 2016, 86: 140–153.

    Article  CAS  PubMed  Google Scholar 

  28. Chase A. Parkinson disease: A role for serotonergic neurons in levodopa-induced dyskinesia. Nat Rev Neurol 2014, 10: 180.

    Article  PubMed  Google Scholar 

  29. Siderowf A, Stern M. Update on Parkinson disease. Ann Intern Med 2003, 138: 651–658.

    Article  PubMed  Google Scholar 

  30. Arai R, Karasawa N, Nagatsu I. Aromatic L-amino acid decarboxylase is present in serotonergic fibers of the striatum of the rat. A double-labeling immunofluorescence study. Brain Res 1996, 706: 177–179.

    CAS  PubMed  Google Scholar 

  31. Carta M, Tronci E. Serotonin system implication in l-DOPA-induced dyskinesia: From animal models to clinical investigations. Front Neurol 2014, 5: 78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Bjorklund A, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord 2013, 28: 1088–1096.

    Article  CAS  PubMed  Google Scholar 

  33. Svenningsson P, Rosenblad C, Arvidsson KA, Wictorin K, Keywood C, Shankar B, et al. Single oral treatment with the 5-HT1A/B agonist, eltoprazine, counteracts L-dopa-induced dyskinesias in Parkinson’s disease: A phase I/IIA, double-blind, randomized, placebo-controlled, dose-finding study. Mov Disord 2015, 30: S130–S130.

    Google Scholar 

  34. Svenningsson P, Rosenblad C, Arvidsson KA, Wictorin K, Keywood C, Shankar B, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 2015, 138: 963–973.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Chen J, Li M, Lv S, Xie Z, Li N, et al. Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology 2019, 148: 1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Lindgren HS, Ohlin KE, Cenci MA. Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology 2009, 34: 2477–2488.

    Article  CAS  PubMed  Google Scholar 

  37. Aristieta A, Ruiz-Ortega JA, Miguelez C, Morera-Herreras T, Ugedo L. Chronic L-DOPA administration increases the firing rate but does not reverse enhanced slow frequency oscillatory activity and synchronization in substantia nigra pars reticulata neurons from 6-hydroxydopamine-lesioned rats. Neurobiol Dis 2016, 89: 88–100.

    Article  CAS  PubMed  Google Scholar 

  38. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 2002, 15: 120–132.

    Article  CAS  PubMed  Google Scholar 

  39. Winkler C, Kirik D, Bjorklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 2002, 10: 165–186.

    Article  PubMed  Google Scholar 

  40. Levesque M, Herrington R, Hamidi S, Avoli M. Interneurons spark seizure-like activity in the entorhinal cortex. Neurobiol Dis 2016, 87: 91–101.

    Article  PubMed  Google Scholar 

  41. Zhou M, Zhang W, Chang J, Wang J, Zheng W, Yang Y, et al. Gait analysis in three different 6-hydroxydopamine rat models of Parkinson’s disease. Neurosci Lett 2015, 584: 184–189.

    Article  CAS  PubMed  Google Scholar 

  42. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Methods 2010, 192: 146–151.

  43. Li M, Zhou M, Wen P, Wang Q, Yang Y, Xiao H, et al. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats. Exp Neurol 2016, 282: 27–36.

    Article  PubMed  Google Scholar 

  44. Zhang HY, Yang J, Wang XN, Yao XM, Han HY, Gao YF, et al. Altered local field potential relationship between the parafascicular thalamic nucleus and dorsal striatum in hemiparkinsonian rats. Neurosci Bull 2019, 35: 315–324.

    Article  PubMed  Google Scholar 

  45. Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 2010, 186: 262–273.

    Article  PubMed  Google Scholar 

  46. Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods 2014, 223: 50–68.

    Article  PubMed  Google Scholar 

  47. Dupre KB, Eskow KL, Negron G, Bishop C. The differential effects of 5-HT1A receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed herniparkinsonian rat. Brain Res 2007, 1158: 135–143.

    Article  CAS  PubMed  Google Scholar 

  48. Iderberg H, Rylander D, Bimpisidis Z, Cenci MA. Modulating mGluR5 and 5-HT1A/1B receptors to treat l-DOPA-induced dyskinesia: effects of combined treatment and possible mechanisms of action. Exp Neurol 2013, 250: 116–124.

    Article  CAS  PubMed  Google Scholar 

  49. Meissner W, Ravenscroft P, Reese R, Harnack D, Morgenstern R, Kupsch A, et al. Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiol Dis 2006, 22: 586–598.

    Article  CAS  PubMed  Google Scholar 

  50. Avila I, Parr-Brownlie LC, Brazhnik E, Castaneda E, Bergstrom DA, Walters JR. Beta frequency synchronization in basal ganglia output during rest and walk in a hemiparkinsonian rat. Exp Neurol 2010, 221: 307–319.

    Article  PubMed  Google Scholar 

  51. Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Ozkurt TE, Elben S, et al. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain 2013, 136: 3659–3670.

    Article  PubMed  Google Scholar 

  52. Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 2011, 134: 359–374.

    Article  PubMed  Google Scholar 

  53. Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol 2013, 26: 662–670.

    Article  PubMed  Google Scholar 

  54. Jin X, Schwabe K, Krauss JK, Alam M. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson’s disease with levodopa-induced dyskinesias. Exp Brain Res 2016, 234: 1105–1118.

    Article  CAS  PubMed  Google Scholar 

  55. Nambu A. Globus pallidus internal segment. Gaba and the Basal Ganglia: From Molecules to Systems 2007, 160: 135–150.

    CAS  Google Scholar 

  56. Shink E, Smith Y. Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 1995, 358: 119–141.

    Article  CAS  PubMed  Google Scholar 

  57. Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994, 72: 507–520.

  58. Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013, 7: 163.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rouillard C, Bedard PJ, Falardeau P, Dipaolo T. Behavioral and biochemical evidence for a different effect of repeated administration of L-dopa and bromocriptine on denervated versus non-denervated striatal dopamine receptors. Neuropharmacology 1987, 26: 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  60. Cenci MA, Lee CS, Bjorklund A. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 1998, 10: 2694–2706.

    Article  CAS  PubMed  Google Scholar 

  61. Yamamoto N, Pierce RC, Soghomonian JJ. Subchronic administration of L-DOPA to adult rats with a unilateral 6-hydroxydopamine lesion of dopamine neurons results in a sensitization of enhanced GABA release in the substantia nigra, pars reticulata. Brain Res 2006, 1123: 196–200.

    Article  CAS  PubMed  Google Scholar 

  62. Rozengurt R, Barnea A, Uchida S, Levy DA. Theta EEG neurofeedback benefits early consolidation of motor sequence learning. Psychophysiology 2016, 53: 965–973.

    Article  PubMed  Google Scholar 

  63. Contarino MF, Bour LJ, Bot M, van den Munckhof P, Speelman JD, Schuurman PR, et al. Tremor-specific neuronal oscillation pattern in dorsal subthalamic nucleus of parkinsonian patients. Brain Stimul 2012, 5: 305–314.

    Article  PubMed  Google Scholar 

  64. Tass P, Smirnov D, Karavaev A, Barnikol U, Barnikol T, Adamchic I, et al. The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor. J Neural Eng 2010, 7.

  65. Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 1997, 113: 557–563.

    Article  CAS  PubMed  Google Scholar 

  66. Kane A, Hutchison WD, Hodaie M, Lozano AM, Dostrovsky JO. Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor. Exp Neurol 2009, 217: 171–176.

    Article  PubMed  Google Scholar 

  67. Barow E, Neumann WJ, Brucke C, Huebl J, Horn A, Brown P, et al. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain 2014, 137: 3012–3024.

    Article  PubMed  Google Scholar 

  68. Neumann WJ, Huebl J, Brucke C, Lofredi R, Horn A, Saryyeva A, et al. Pallidal and thalamic neural oscillatory patterns in tourette’s syndrome. Ann Neurol 2018, 84: 505–514.

    Article  PubMed  Google Scholar 

  69. Priori A, Giannicola G, Rosa M, Marceglia S, Servello D, Sassi M, et al. Deep brain electrophysiological recordings provide clues to the pathophysiology of Tourette syndrome. Neurosci Biobehav Rev2013, 37: 1063–1068.

    Article  PubMed  Google Scholar 

  70. Lindgren HS, Rylander D, Ohlin KE, Lundblad M, Cenci MA. The “motor complication syndrome” in rats with 6-OHDA lesions treated chronically with L-DOPA: relation to dose and route of administration. Behav Brain Res 2007, 177: 150–159.

    Article  CAS  PubMed  Google Scholar 

  71. Dekundy A, Lundblad M, Danysz W, Cenci MA. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 2007, 179: 76–89.

    Article  CAS  PubMed  Google Scholar 

  72. Cenci MA, Crossman AR. Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord 2018, 33: 889–899.

    Article  CAS  PubMed  Google Scholar 

  73. Bateup HS, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier DJ, et al. Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A 2010, 107: 14845–14850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Parker PR, Lalive AL, Kreitzer AC. Pathway-specific remodeling of thalamostriatal synapses in Parkinsonian mice. Neuron 2016, 89: 734–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011, 71: 9–34.

    Article  CAS  PubMed  Google Scholar 

  76. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009, 324: 354–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Menardy F, Varani AP, Combes A, Lena C, Popa D. Functional alteration of cerebello-cerebral coupling in an experimental mouse model of Parkinson’s disease. Cere Cort 2019, 29: 1752–1766.

    Article  Google Scholar 

  78. Su YT, Gu MY, Chu X, Feng X, Yu YQ. Whole-brain mapping of direct inputs to and axonal projections from GABAergic neurons in the parafacial zone. Neurosci Bull 2018, 34: 485–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81771210) and the Natural Science Foundation of Guangdong Province, China (2015A030313288).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Luo or Wangming Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Q., Li, N. et al. Dyskinesia is Closely Associated with Synchronization of Theta Oscillatory Activity Between the Substantia Nigra Pars Reticulata and Motor Cortex in the Off L-dopa State in Rats. Neurosci. Bull. 37, 323–338 (2021). https://doi.org/10.1007/s12264-020-00606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00606-3

Keywords

Navigation