Skip to main content

Advertisement

Log in

Diversity and species composition of arbuscular mycorrhizal fungi across maize fields in the southern part of Belgium

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are key actors among soil microbial inhabitants, forming beneficial associations with most horticultural plants and crops (e.g., maize). For maize, the world most cultivated cereal, data on AMF species diversity in fields is sparse and even totally nonexistent in the southern part of Belgium where maize represents 8% of the cultivated area. In the present study, 14 maize fields in South Belgium under conventional, conversion, or organic management were analyzed for AMF diversity and species composition using 454 pyrosequencing. A large part (54%) of the 49 AMF species observed were unknown or have not been described in the literature. AMF diversity highly varied among fields, with the number of species ranging between 1 and 37 according to the field. A statistically significant effect of management was measured on AMF diversity, with the highest Hill index values (diversity and richness) under the organic management system compared with conventional management or conversion. Our results suggest a positive effects of organic management on AMF diversity in maize. They also highlight the rather high diversity or richness of AMF and the large portion of sequences not yet ascribed to species, thereby emphasizing a need to intensify AMF identification in cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  • An G-H, Kobayashi S, Enoki H et al (2010) How does arbuscularmycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327:441–453

    CAS  Google Scholar 

  • Baltruschat H, Santos VM, da Silva DKA et al (2019) Unexpectedly high diversity of arbuscularmycorrhizal fungi in fertile Chernozem croplands in Central Europe. CATENA 182:104135

    CAS  Google Scholar 

  • Battie-Laclau P et al. (2019) Role of trees and herbaceous vegetation beneath trees in maintaining arbuscular mycorrhizal communities in temperate alley cropping systems. Plant Soil 1–19

  • Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302

    PubMed  PubMed Central  Google Scholar 

  • Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and trees. Bioinformatics 27:2068–2075

    CAS  PubMed  Google Scholar 

  • Berta G, Copetta A, Gamalero E et al (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170

    PubMed  Google Scholar 

  • Bhat RA et al (2017) Mycorrhizae: a sustainable industry for plant and soil environment. mycorrhiza-nutrient uptake. Biocontrol, Ecorestoration. Springer, pp 473–502

    Google Scholar 

  • Błaszkowski J, Chwat G, Góralska A et al (2015) Two new genera, Dominikia and Kamienskia, and D. disticha sp. nov.inGlomeromycota. Nova Hedwigia 100:225–238

    Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscularmycorrhizal symbiosis? Field Crops Res 108:14–31

    Google Scholar 

  • Borriello R, Lumini E, Girlanda M et al (2012) Effects of different management practices on arbuscularmycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48:911–922

    Google Scholar 

  • Börstler B, Thiery O, Sýkorová Z et al (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomusintraradices in two agricultural field experiments and two semi-natural grasslands. Mol Ecol 19:1497–1511

    PubMed  Google Scholar 

  • Brito I, Goss M, Alho L et al (2018) Agronomic management of AMF functional diversity to overcome biotic and abiotic stresses-The role of plant sequence and intact extraradical mycelium. Fungal Ecol

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    PubMed  Google Scholar 

  • Caporaso J, Kuczynski J, Stombaugh J et al (2010) Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr 7(5):335–336

    CAS  Google Scholar 

  • Chagnon PL, Bradley RL, Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscularmycorrhizal community structure. New Phytol 194:307–312

    PubMed  Google Scholar 

  • Chao A, Ma KH, Hsieh TC (2016) iNEXT (iNterpolation and EXTrapolation) Online

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  Google Scholar 

  • Costanza R et al. (1997) The value of the world's ecosystem services and natural capital. Nature 387:253

  • Dias T, Correia P, Carvalho L et al (2018) Arbuscularmycorrhizal fungal species differ in their capacity to overrule the soil’s legacy from maize monocropping. Appl Soil Ecol 125:177–183

    Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T et al (2010) Idiosyncrasy and overdominance in the structure of natural communities of arbuscularmycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428

    Google Scholar 

  • Garcés-Ruiz M, Senés-Guerrero C, Declerck S et al (2017) Arbuscularmycorrhizal fungal community composition in Carludovicapalmata, Costusscaber and Euterpeprecatoria from weathered oil ponds in the Ecuadorian Amazon. Front Microbiol 8:2134

    PubMed  PubMed Central  Google Scholar 

  • Garcés-Ruiz M, Senés-Guerrero C, Declerck S et al (2019) Community composition of arbuscularmycorrhizal fungi associated with native plants growing in a petroleum-polluted soil of the Amazon region of Ecuador. MicrobiologyOpen 8:e00703

    PubMed  Google Scholar 

  • García-González I, Quemada M, Gabriel JL et al (2016) Arbuscularmycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Appl Soil Ecol 102:10–18

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming Agriculture, ecosystems & environment 113:17-35

  • Green RE, Cornell SJ, Scharlemann JP et al (2005) Farming and the fate of wild nature. Sci 307:550–555

  • Higo M, Takahashi Y, Gunji K et al (2018) How are arbuscularmycorrhizal associations related to maize growth performance during short-term cover crop rotation? J Sci Food Agric 98:1388–1396

    CAS  PubMed  Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F et al (2006) Communities of arbuscularmycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    CAS  PubMed  Google Scholar 

  • Jefwa J et al (2012) Impact of land use types and farming practices on occurrence of arbuscularmycorrhizal fungi (AMF) Taita-Taveta district in Kenya. Agr Ecosyst Environ 157:32–39

    Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM et al (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscularmycorrhizal fungi. Crop Sci 40:358–364

    Google Scholar 

  • Krüger M, Krüger C, Walker C et al (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscularmycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    PubMed  Google Scholar 

  • Krüger M, Stockinger H, Krüger C et al (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscularmycorrhizal fungi. New Phytol 183:212–223

    PubMed  Google Scholar 

  • Loján P, Senés-Guerrero C, Suárez JP et al (2017) Potato field-inoculation in Ecuador with Rhizophagusirregularis: no impact on growth performance and associated arbuscularmycorrhizal fungal communities. Symbiosis 73:45–56

    Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K et al (2016) Effects of pesticides on environment. In: Plant, soil and microbes. Springer, pp 253–269

  • Miao-Yan W, Liang-Bin H, Wei-Hua W et al (2009) Influence of long-term fixed fertilization on diversity of arbuscularmycorrhizal fungi. Pedosphere 19:663–672

    Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M et al (2004) High functional diversity within species of arbuscularmycorrhizal fungi. New Phytol 164:357–364

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2003) Impact of land use intensity on the species diversity of arbuscularmycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2005) Community structure of arbuscularmycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    PubMed  Google Scholar 

  • Oehl F, Sieverding E, Mäder P et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscularmycorrhizal fungi. Oecologia 138:574–583

    PubMed  Google Scholar 

  • Oksanen J et al (2016) vegan: Community Ecology Package. R package version 2.4–3. Vienna: R Foundation for Statistical Computing [Google Scholar]

  • Olanrewaju OS, Ayangbenro AS, Glick BR et al (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166

    CAS  PubMed  Google Scholar 

  • Plouznikoff K, Declerck S, Calonne-Salmon M (2016) Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi. In: Belowground Defence Strategies in Plants. Springer, pp 341–400

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Ramírez-Flores MR, Bello-Bello E, Rellán-Álvarez R et al (2019) Inoculation with the mycorrhizal fungus Rhizophagus irregularis increases nutrient uptake in maize (Zea mays) through hyphal foraging and promotion of root growth. bioRxiv 695411

  • Rillig MC et al. (2019) Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol 1–5

  • Rocha I, Souza‐Alonso P, Pereira G et al (2019) Using microbial seed coating for improving cowpea productivity under a low‐input agricultural system. J Sci Food Agric

  • Schlaeppi K et al (2016) High-resolution community profiling of arbuscularmycorrhizal fungi. New Phytol 212:780–791

    CAS  PubMed  Google Scholar 

  • Senés-Guerrero C, Schüßler A (2016) A conserved arbuscularmycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77:317–333

    Google Scholar 

  • Senés-Guerrero C, Schüßler A (2016b) DNA-based characterization and identification of arbuscular mycorrhizal fungi species. In: Microbial Environmental Genomics (MEG). Springer, pp 101–123

  • Senés-Guerrero C, Torres-Cortés G, Pfeiffer S et al (2014) Potato-associated arbuscularmycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24:405–417

    PubMed  Google Scholar 

  • Smith SE, Read D (2008). In: Mycorrhizal Symbiosis (Third Edition). Academic Press, London. https://doi.org/10.1016/B978-012370526-6.50002-7

  • Stefani F, Bencherif K, Sabourin S et al (2020) Taxonomic assignment of arbuscular mycorrhizal fungi in an 18S metagenomic dataset: a case study with saltcedar (Tamarix aphylla). Mycorrhiza 1–13

  • Suman S, Swayamprabha S, Tanuja T (2018) Impact of Pesticide (Chlorpyriphos) on Soil Microbial Diversity. Mapana-Journal of Sciences 17

  • Taylor J, Helgason T, Öpik M (2017) Molecular community ecology of arbuscular mycorrhizal fungi. The fungal community: its organization and role in the ecosystem, 4th edn CRC Press, 00

  • van Der Heijden MG, Scheublin TR, Brader A (2004) Taxonomic and functional diversity in arbuscularmycorrhizal fungi–is there any relationship? New Phytol 164:201–204

    Google Scholar 

  • van Tuinen D, Tranchand E, Hirissou F et al (2020) Carbon partitioning in a walnut-maize agroforestry system through arbuscular mycorrhizal fungi. Rhizosphere 100230

  • Verbruggen E, Kiers E (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen E, Röling WF, Gamper HA et al (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    CAS  PubMed  Google Scholar 

  • Verbruggen E, Xiang D, Chen B et al (2015) Mycorrhizal fungi associated with high soil N: P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biol Biochem 86:1–4

    CAS  Google Scholar 

  • Verzeaux J, Hirel B, Dubois F et al (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscularmycorrhizae: Basic and agronomic aspects. Plant Sci 264:48–56

    CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Zerbe P (2015) Small molecules with big impact: terpenoidphytoalexins as key factors in maize stress tolerance. Plant, Cell Environ 38:2193–2194

    Google Scholar 

Download references

Acknowledgments

We would like to thank Emmanuel Niyigena and Catherine Rasse of «Support en Méthodologie et Calcul Statistique» (Université catholique de Louvain) for their help with statistical analyses. MC and P-LA received financial support from the Service Public de Wallonie Direction générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement Direction de la Recherche, under contract No D31-1314.

Funding

This research was supported by the Direction Générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement du service public de Wallonie, contract number D31/1314.

Author information

Authors and Affiliations

Authors

Contributions

MC, SC, GF, and SD conceived the experiments. MC, VM, GM, GF conducted the experiments. CSG conducted the NGS data analyses. P-LA analyzed the results and wrote the manuscript. SC, SD, CSG reviewed the manuscript.

Corresponding author

Correspondence to Stéphane Declerck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2870 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaux, PL., Mison, C., Senés-Guerrero, C. et al. Diversity and species composition of arbuscular mycorrhizal fungi across maize fields in the southern part of Belgium. Mycorrhiza 31, 265–272 (2021). https://doi.org/10.1007/s00572-020-01007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-01007-0

Keywords

Navigation