Skip to main content
Log in

Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and Its Application to Strength Prediction of Welded Aluminum

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, a simulation-based examination on the deformation mechanism in the friction stir welding (FSW) process is conducted, which may not be efficiently feasible by experiment due to severe deformation and rotation of material flow near a tool pin. To overcome the severity of distortion of plastically deforming finite element meshes in the Lagrange formulation, and an over-simplified elastic-plasticity constitutive law and contact assumption in the Eulerian formulation, the arbitrary Lagrangian–Eulerian (ALE) formulation is employed for the finite element simulations. Superior accuracy in predicting the temperature profiles and distributions of the friction stir welded aluminum alloy workpiece could be obtained compared to the results of Eulerian based simulations. In particular, the ALE based simulations could predict the sharper gradient of temperature decrease as the distance from the welding zone increases, while the Eulerian based model gives more uniform profiles. The second objective of the study is to investigate the coupling of simulation-based temperature histories into the strength prediction model, which is formulated on the basis of precipitation kinetics and precipitate-dislocation interaction. The calculated yield strength distribution is also in better agreement with experiment than that by the Eulerian based model. Finally, the mechanism of the FSW process is studied by thoroughly examining the frictional and material flow behavior of the aluminum alloy in the welded zone. It is suggested that the initially high rate of temperature increase is attributed to frictional heat due to slipping of material on the tool surface, and the subsequent saturated temperature is the result of sequential repetitive activations of the sticking and slipping modes of the softened material. The sticking mode is the main source of plastically dissipated heat by the large plastic deformation around the rotating tool pin. The present integrated finite element simulation and microstructure-based strength prediction model may provide an efficient tool for the design of the FSW process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In the modeling of heat generation by plastic deformation, the Eulerian based simulation with FLUENT software by Kim et al. [15] used a conversion factor 1.0, but the interfacial friction heat was neglected.

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, U.S. Patent 5,460,317 (1991)

  2. C.M. Chen, R. Kovacevic, Int. J. Mach. Tools Manuf. 43, 1319 (2003)

    Article  Google Scholar 

  3. P. Ulysse, Int. J. Mach. Tools Manuf. 42, 1549 (2002)

    Article  Google Scholar 

  4. H.J. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Process. Tech. 142, 692 (2003)

    Article  CAS  Google Scholar 

  5. L. Commin, M. Dumont, J.E. Masse, L. Barrallier, Acta Mater. 57, 326 (2009)

    Article  CAS  Google Scholar 

  6. S.H.C. Park, Y.S. Sato, H. Kokawa, Scripta. Mater. 49, 161 (2003)

    Article  CAS  Google Scholar 

  7. N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Mater. Sci. Eng. A 472, 179 (2008)

    Article  Google Scholar 

  8. Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Mater. Sci. Eng. A 485, 448 (2008)

    Article  Google Scholar 

  9. H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Des. 26, 41 (2005)

    Article  CAS  Google Scholar 

  10. Y.C. Chen, K. Nakata, Mater. Design 30, 469 (2009)

    Article  CAS  Google Scholar 

  11. P. Xue, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 528, 4683 (2011)

    Article  Google Scholar 

  12. T. Watanabe, H. Takayama, A. Yanagisawa, J. Mater. Process. Tech. 178, 342 (2006)

    Article  CAS  Google Scholar 

  13. M. Habibnia, M. Shakeri, S. Nourouzi, M.K.B. Givi, Int. J. Adv. Manuf. Tech. 76, 819 (2015)

    Article  Google Scholar 

  14. H. Schmidt, J. Hattel, Model. Simul. Mater. Sci. Eng. 13, 77 (2005)

    Article  Google Scholar 

  15. J.H. Kim, F. Barlat, C. Kim, K. Chung, Met. Mater. Int. 15, 125 (2009)

    Article  Google Scholar 

  16. D. Bernard, D.G. Hattingh, W.E. Goosen, M.N. James, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00622-y

    Article  Google Scholar 

  17. W.D. Lockwood, B. Tomaz, A.P. Reynolds, Mater. Sci. Eng. A 323, 348 (2002)

    Article  Google Scholar 

  18. D. Kim, W. Lee, J. Kim, C. Kim, K. Chung, Int. J. Mech. Sci. 52, 612 (2010)

    Article  Google Scholar 

  19. L. Karthikeyan, V.S.S. Kumar, Mater. Design 32, 3085 (2011)

    Article  CAS  Google Scholar 

  20. V. Soundararajan, S. Zekovic, R. Kovacevic, Int. J. Mach. Tools Manuf. 45, 1577 (2005)

    Article  Google Scholar 

  21. G. Buffa, J. Hua, R. Shivpuri, L. Fratini, Mater. Sci. Eng. A 419, 389 (2006)

    Article  Google Scholar 

  22. X. Pei, P. Dong, Int. J. Mach. Tools Manuf. 123, 89 (2017)

    Article  Google Scholar 

  23. X.X. Zhang, B.L. Xia, Z.Y. Ma, Metall. Mater. Trans. A 42, 3218 (2011)

    Article  CAS  Google Scholar 

  24. X.X. Zhang, B.L. Xia, Z.Y. Ma, Metall. Mater. Trans. A 42, 3229 (2011)

    Article  CAS  Google Scholar 

  25. M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Int. J. Mach. Tools Manuf. 50, 143 (2010)

    Article  Google Scholar 

  26. O.R. Myhr, Ø. Grong,  Acta Mater. 48, 1605 (2000)

    Article  CAS  Google Scholar 

  27. O.R. Myhr, Ø. Grong, S.J. Andersen, Acta Mater. 49, 65 (2001)

    Article  CAS  Google Scholar 

  28. C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Acta Mater. 52, 2447 (2005)

    Article  Google Scholar 

  29. G.R. Johnson, W.H. Cook, in Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, April 19-21, 1983, A constitutive model and data for metals subjected to large strains, high strain rates and high temperature (1983), pp. 541–547

  30. S.H. Cha, M.S. Shin, H.J. Lee, J.B. Kim, Trans. Mater. Process. 19, 167 (2010)

    Article  Google Scholar 

  31. P. Carlone, G.S. Palazzo, Metallogr. Microstruct. Anal. 2, 213 (2013)

    Article  CAS  Google Scholar 

  32. S.K. Khanna, X. Long, W.D. Porter, H. Wang, C.K. Liu, M. Radovic, E. Lara-Curzio, Sci. Technol. Weld. Joi. 10, 82 (2005)

    Article  CAS  Google Scholar 

  33. Z. Zhang, J.T. Chen, Z.W. Zhang, H.W. Zhang, J. Mater. Sci. 46, 5815 (2011)

    Article  CAS  Google Scholar 

  34. A.J. Ardell, Metall. Trans. A 16, 2131 (1985)

    Article  Google Scholar 

  35. A. Deschamps, Y. Brechet, Acta Mater. 47, 281 (1998)

    Article  Google Scholar 

  36. M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, H. Shercliff, Metall. Mater. Trans. A 37, 2183 (2006)

    Article  Google Scholar 

  37. J.R. Cahoon, W.H. Broughton, A.R. Kutzak, Metall. Trans. 2, 1979 (1971)

    CAS  Google Scholar 

  38. S. Tutunchilar, M. Haghpanahi, M.K.B. Givi, P. Asadi, P. Bahemmat, Mater. Design 40, 415 (2012)

    Article  CAS  Google Scholar 

  39. P. Gao, Y. Zhang, K.P. Mehta, Metallurgical and mechanical properties of Al–Cu joint by friction stir spot welding and modified friction stir clinching. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00759-w

    Article  Google Scholar 

  40. Q. Wen, W. Li, V. Patel, Y. Gao, A. Vairis, Investigation on the effects of welding speed on bobbin tool friction stir welding of 2219 aluminum alloy. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00450-9

    Article  Google Scholar 

Download references

Acknowledgements

MGL and DJM appreciate the support of LG Chem. They also appreciate the partial supports by the NRF of Korea (No. 2019R1A5A6099595). DJM thanks to Mr. Chanyang Kim who helped the ALE simulations and material identification which were partially supported by KIAT (No. P0002019). The constitutive modeling for the high temperature mechanical properties are acknowledged from the work supported by the Technology Innovation Program (Grant No. 10063488) funded by the Ministry of Trade, Industry and Energy (MOTIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myung, D., Noh, W., Kim, JH. et al. Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and Its Application to Strength Prediction of Welded Aluminum. Met. Mater. Int. 27, 650–666 (2021). https://doi.org/10.1007/s12540-020-00901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00901-8

Keywords

Navigation