Skip to main content
Log in

Mathematical Modeling on Slag Consumption and Lubrication in a Slab Continuous Casting Mold

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, a two-dimensional mathematical model was applied to investigate the slag lubrication in continuous casting mold of slab through the acquisition of the average slag consumption per oscillation cycle and the shear stress acting on the shell. The thickness and the consumption of the slag in the shell/mold gap and the downward velocity on either side of the liquid slag were monitored at different distances below meniscus and compared with different casting parameters. With the increase of the distance below meniscus from 10 to 300 mm, the thickness of the total slag and the liquid slag decreased, and thickness was within 0.78 to 1.11 and 0.04 to 0.33 mm, respectively. The average slag consumption at four different locations below meniscus was approximate, within 0.0287 to 0.0298 kg/s in three adjacent oscillation cycles. With enough slag consumption, the shear stress was extremely small and was below 80 Pa at 100 and 300 mm below meniscus. With the decrease of the casting speed from 1.6 to 1.2 m/min, the casting superheat from 45 to 25 K and the oscillation frequency from 180 to 100 cpm, and the increase of the oscillation amplitude from 2 to 5 mm, the average slag consumption per ton of steel and the slag consumption (kg/m2) increased, and the consumption was within 0.0245 to 0.0415 kg/s and mainly below 0.40 kg/m2, respectively, which resulted in the improvement of the lubrication in the shell/mold gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. 1. K. C. Mills: Ironmaking Steelmaking, 2017, vol. 44, pp. 1-7.

    Article  Google Scholar 

  2. 2. K. Mills, A. Fox, Z. Li and R. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26-34.

    Article  CAS  Google Scholar 

  3. 3. L. Zhang, J. Aoki and B. G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 361-79.

    Article  CAS  Google Scholar 

  4. 4. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan and B. G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38, pp. 63-83.

    Article  CAS  Google Scholar 

  5. 5. S. Zhang, Q. Wang, S. He and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2038-49.

    Article  Google Scholar 

  6. 6. X. Yan, M. Gan, H. Yuan, Q. Wang, S. He and Q. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1052-59.

    Article  Google Scholar 

  7. 7. K. C. Mills, P. Ramirezlopez, P. D. Lee, B. Santillana, B. G. Thomas and R. Morales: Ironmaking Steelmaking, 2014, vol. 41, pp. 242-49.

    Article  CAS  Google Scholar 

  8. 8. X. Zhang, W. Chen, P. R. Scheller, Y. Ren and L. Zhang: JOM, 2019, vol. 71, pp. 78-87.

    Article  CAS  Google Scholar 

  9. 9. H.-J. Shin, S.-H. Kim, B. G. Thomas, G.-G. Lee, J.-M. Park and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.

    Article  CAS  Google Scholar 

  10. 10. J. Yang, X. Meng and M. Zhu: teel Res. Int., 2013, vol. 85, pp. 710-17.

    Article  Google Scholar 

  11. P. E. RamirezLopez, P. N. Jalali, P. G. Jönsson and K. C. Mills: ISIJ Int., 2018, vol. 58, pp. 201-10.

    Article  Google Scholar 

  12. 12. J. K. Brimacombe, F. Weinberg and E. B. Hawbolt: Metall. Trans. B, 1979, vol. 10B, pp. 279-92.

    Article  CAS  Google Scholar 

  13. 13. E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 493-509.

    Article  CAS  Google Scholar 

  14. 14. K. C. Mills and A. B. Fox: ISIJ Int., 2003, vol. 43, pp. 1479-86.

    Article  CAS  Google Scholar 

  15. 15. A. Yamauchi, T. Emi and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084-1093.

    Article  CAS  Google Scholar 

  16. 16. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida and Y. Komatsu: ISIJ Int., 1991, vol. 31, pp. 254-61.

    Article  Google Scholar 

  17. 17. P. E. R. Lopez, K. C. Mills, P. D. Lee and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 109-22.

    Article  Google Scholar 

  18. Y. Deng, Y. Zhang, Q. Wang and W. Qian: JOM, 2018, pp. 1–8.

  19. 19. M. Wolf: Process Technology, 1995, vol. 13, pp. 99-117.

    CAS  Google Scholar 

  20. O.D. Kwon, J. Choi, I.R. Lee, J.W. Kim, K.H. Moon, Y.K. Shin, Proc. 74th Steelmaking Conf., 1991. (ISS, Warrendale, PA, 1991) pp. 561–70.

  21. 21. T. Kajitani, K. Okazawa, W. Yamada and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. pp. 250-56.

    Article  CAS  Google Scholar 

  22. 22. J. Yang, X. Meng, N. Wang and M. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1-18.

    Google Scholar 

  23. 23. H. Zhang and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 779-93.

    Article  Google Scholar 

  24. 24. P. Lyu, W. Wang and H. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 247-59.

    Article  Google Scholar 

  25. 25. Y. Meng and B. G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.

    Article  CAS  Google Scholar 

  26. 26. Y. Meng and B. G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-25.

    Article  CAS  Google Scholar 

  27. 27. P. E. Ramirez-Lopez, P. D. Lee, K. C. Mills and B. Santillana: ISIJ Int., 2010, vol. 50, pp. 1797-1804.

    Article  CAS  Google Scholar 

  28. 28. P. E. Ramirez-Lopez, P. D. Lee and K. C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.

    Article  CAS  Google Scholar 

  29. R. Lopez and P. Ernesto, Imperial College London, London (2010).

  30. 30. A. Jonayat and B. G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1842-64.

    Article  Google Scholar 

  31. J. Yang, Z. Cai and M. Zhu: ISIJ Int., 2018, vol. 58, pp. 2071-78.

    Article  CAS  Google Scholar 

  32. 32. X. Zhang, W. Chen and L. Zhang: China Foundry, 2017, vol. 14, pp. 416-20.

    Article  Google Scholar 

  33. 33. X. Zhang, W. Chen, Y. Ren and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1444-60.

    Article  Google Scholar 

  34. 34. L. Zhang and Y. Wang: JOM, 2012, vol. 64, pp. 1063-74.

    Article  CAS  Google Scholar 

  35. 35. Y. Wang and L. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319-21.

    Article  Google Scholar 

  36. 36. C. Ojeda, B. G. Thomas, J. Barco and J. L. Arana: Proc. AISTech, 2007, vol. 2, pp. 269-83.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. U1860206, 51725402, 52004045, 51804057, and 51874057), the Postdoctoral Foundation of Chongqing Science Foundation (Grant No. cstc2020jcyj-bshX0003), the High Steel Center (HSC) at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xubin Zhang or Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 07, 2020; accepted October 27, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dan, Z., Chen, W. et al. Mathematical Modeling on Slag Consumption and Lubrication in a Slab Continuous Casting Mold. Metall Mater Trans B 52, 322–338 (2021). https://doi.org/10.1007/s11663-020-02022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02022-4

Navigation