Skip to main content
Log in

PSInSAR-Based Surface Deformation Mapping of Angkor Wat Cultural Heritage Site

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Satellite data are making revolutionary changes in the field of archaeology, and nowadays they have been widely used by the scientific community for regular mapping and monitoring of cultural heritage sites. The development of synthetic aperture radar (SAR) sensors helps in monitoring the heritage site with higher accuracy. This study uses the Persistent Scatter Interferometric SAR (PSInSAR), which is an advanced technique of differential SAR interferometry to find the surface deformation of the Angkor Wat temple and its premises. Seven interferometric data from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) of Advanced Land Observing Satellite-1 (ALOS-1) for the period 2006–2009 and ten interferometric data from the ALOS-2 PALSAR-2 for the period 2014–2018 have been used in this study to identify the deformation pattern. It is found from this study that the Angkor Wat temple and its outer walls are stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali, M. Z., Chu, H.-J., & Burbey, T. J. (2020). Mapping and predicting subsidence from spatio-temporal regression models of groundwater-drawdown and subsidence observations. Hydrogeology Journal. https://doi.org/10.1007/s10040-020-02211-0.

    Article  Google Scholar 

  • APSARA. (2012). Angkor Charter. Siem Reap, Cambodia. https://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Phnom_Penh/pdf/angkor_charter_rev_jul_2014-en.pdf

  • Babu, A., & Kumar, S. (2019a). PSInSAR processing for volcanic ground deformation monitoring over fogo Island. In J. Martínez-Frías (Ed.s), Proceedings. Multidisciplinary Digital Publishing Institute (MDPI AG). (Vol. 24, pp. 3:1–8).

  • Babu, A., & Kumar, S. (2019). SBAS interferometric analysis for volcanic eruption of Hawaii island. Journal of Volcanology and Geothermal Research, 370, 31–50.

    Article  Google Scholar 

  • Baillie, B. (2006). Conservation of the sacred at Angkor Wat: Further reflections on living heritage. Conservation and Management of Archaeological Sites, 8(3), 123–131. https://doi.org/10.1179/175355206x265788.

    Article  Google Scholar 

  • Bartolino, J.R., & Cunningham W.L. (2003). Ground-Water Depletion Across the Nation. U.S Geological Survey Fact Sheet 103–03. https://pubs.usgs.gov/fs/fs-103-03/#pdf

  • Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., & Novali, F. (2008). Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resources Research. https://doi.org/10.1029/2007WR006152.

    Article  Google Scholar 

  • Besoya, M., Govil, H., & Bhaumik, P. (2020). A review on surface deformation evaluation using multitemporal SAR interferometry techniques. Spatial Information Research. https://doi.org/10.1007/s41324-020-00344-8.

    Article  Google Scholar 

  • Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., & Puglisi, G. (2011). Structural assessment of mount Etna volcano from permanent scatterers analysis. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2010GC003213.

    Article  Google Scholar 

  • Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169–209. https://doi.org/10.1146/annurev.earth.28.1.169.

    Article  Google Scholar 

  • Carò, F., Basso, E., & Leona, M. (2016). The Earth sciences from the perspective of an art museum. Elements, 12(1), 33–38. https://doi.org/10.2113/gselements.12.1.33.

    Article  Google Scholar 

  • Carter, A., Heng, P., Stark, M., Chhay, R., & Evans, D. (2018). Urbanism and residential patterning in Angkor. Journal of Field Archaeology, 43(6), 492–506. https://doi.org/10.1080/00934690.2018.1503034.

    Article  Google Scholar 

  • Castagnetti, C., Cosentini, R. M., Lancellotta, R., & Capra, A. (2017). Geodetic monitoring and geotechnical analyses of subsidence induced settlements of historic structures. Structural Control and Health Monitoring. https://doi.org/10.1002/stc.2030.

    Article  Google Scholar 

  • Castillo, C. C., Carter, A., Kingwell-Banham, E., Zhuang, Y., Weisskopf, A., Chhay, R., et al. (2020). The Khmer did not live by rice alone: Archaeobotanical investigations at Angkor Wat and Ta Prohm. Archaeological Research in Asia. https://doi.org/10.1016/j.ara.2020.100213.

    Article  Google Scholar 

  • Chapman, B., & Blom, R. G. (2013). Synthetic aperture radar, technology, past and future applications to archaeology. In D. C. Comer & M. J. Harrower (Eds.), Mapping archaeological landscapes from space (pp. 113–131). New York, NY: Springer.

    Chapter  Google Scholar 

  • Chase, A. F., Chase, D. Z., Weishampel, J. F., Drake, J. B., Shrestha, R. L., Slatton, K. C., et al. (2011). Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol. Belize. Journal of Archaeological Science, 38(2), 387–398. https://doi.org/10.1016/j.jas.2010.09.018.

    Article  Google Scholar 

  • Chen, F., Guo, H., Ishwaran, N., Liu, J., Wang, X., Zhou, W., & Tang, P. (2019). Understanding the relationship between the water crisis and sustainability of the Angkor world heritage site. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2019.111293.

    Article  Google Scholar 

  • Chen, F., Guo, H., Ma, P., Lin, H., Wang, C., Ishwaran, N., & Hang, P. (2017). Radar interferometry offers new insights into threats to the Angkor site. Science Advances, 3(3), e1601284. https://doi.org/10.1126/sciadv.1601284.

    Article  Google Scholar 

  • Chen, F, Jiang, A., & Ishwaran, N. (2014). Angkor site monitoring and evaluation by radar remote sensing. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 9260, pp. 1–9).

  • Chen, F., Lasaponara, R., & Masini, N. (2017). An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. Journal of Cultural Heritage, 23, 5–11. https://doi.org/10.1016/j.culher.2015.05.003.

    Article  Google Scholar 

  • Chen, G., Zhang, Y., Zeng, R., Yang, Z., Chen, X., Zhao, F., & Meng, X. (2018). Detection of land subsidence associated with land creation and rapid urbanization in the Chinese loess plateau using time series InSAR: A case study of Lanzhou new district. Remote Sensing. https://doi.org/10.3390/rs10020270.

    Article  Google Scholar 

  • Cœdès, G. (1906). La stèle de Ta-Prohm. Bulletin de l’Ecole française d’Extrême-Orient. Tome, 6(1), 44–86.

    Article  Google Scholar 

  • Comerci, V., Vittori, E., Cipolloni, C., Di Manna, P., Guerrieri, L., Nisio, S., et al. (2015). Geohazards monitoring in Roma from InSAR and in situ data: Outcomes of the PanGeo project. Pure and Applied Geophysics, 172(11), 2997–3028. https://doi.org/10.1007/s00024-015-1066-1.

    Article  Google Scholar 

  • Crosetto, M., Crippa, B., & Biescas, E. (2005). Early detection and in-depth analysis of deformation phenomena by radar interferometry. Engineering Geology, 79(1–2), 81–91. https://doi.org/10.1016/j.enggeo.2004.10.016.

    Article  Google Scholar 

  • Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011.

    Article  Google Scholar 

  • Cuenca-García, C., Risbøl, O., Bates, C. R., Stamnes, A. A., Skoglund, F., Ødegård, O., et al. (2020). Sensing archaeology in the north: The use of non-destructive geophysical and remote sensing methods in archaeology in Scandinavian and North Atlantic territories. Remote Sensing. https://doi.org/10.3390/RS12183102.

    Article  Google Scholar 

  • Erban, L. E., Gorelick, S. M., Zebker, H. A., & Fendorf, S. (2013). Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13751–13756. https://doi.org/10.1073/pnas.1300503110.

    Article  Google Scholar 

  • Evans, D., & Fletcher, R. (2015). The landscape of Angkor Wat redefined. Antiquity, 89(348), 1402–1419.

    Article  Google Scholar 

  • Evans, D. H., Fletcher, R. J., Pottier, C., Chevance, J.-B., Soutif, D., Tan, B. S., et al. (2013). Uncovering archaeological landscapes at Angkor using lidar. Proceedings of the National Academy of Sciences, 110(31), 12595–12600. https://doi.org/10.1073/pnas.1306539110.

    Article  Google Scholar 

  • Evans, D., Pottier, C., Fletcher, R., Hensley, S., Tapley, I., Milne, A., & Barbetti, M. (2007). A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14277–14282. https://doi.org/10.1073/pnas.0702525104.

    Article  Google Scholar 

  • Evans, D., & Traviglia, A. (2012). Uncovering Angkor: Integrated remote sensing applications in the archaeology of early Cambodia. Remote Sensing and Digital Image Processing, 16, 197–230. https://doi.org/10.1007/978-90-481-8801-7_9.

    Article  Google Scholar 

  • Ezquerro, P., Tomas, R., Bejar-Pizarro, M., Fernandez-Merodo, J. A., Guardiola-Albert, C., Staller, A., et al. (2020). Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.134757.

    Article  Google Scholar 

  • Falser, M. S. (2014). From a colonial reinvention to postcolonial heritage and a global commodity: performing and re-enacting Angkor Wat and the Royal Khmer Ballet. International Journal of Heritage Studies, 20(7–8), 702–723. https://doi.org/10.1080/13527258.2013.794746.

    Article  Google Scholar 

  • Fárová, K., Jelének, J., Kopačková-Strnadová, V., & Kycl, P. (2019). Comparing DInSAR and PSI techniques employed to Sentinel-1 data to monitor highway stability: A case study of a massive dobkovičky landslide, Czech Republic. Remote Sensing. https://doi.org/10.3390/rs11222670.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent Scatters in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661.

    Article  Google Scholar 

  • Filliozat, J. (1947). Henri Parmentier. L’art khmèr classique. Monuments du quadrant Nord-Est. Revue de l’histoire des religions, 227–228. https://www.persee.fr/doc/rhr_0035-1423_1947_num_134_1_5617

  • Fletcher, R., Evans, D., Pottier, C., & Rachna, C. (2015). Angkor Wat: an introduction. Antiquity, 89(348), 1388–1401.

    Article  Google Scholar 

  • Foroughnia, F., Nemati, S., Maghsoudi, Y., & Perissin, D. (2019). An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. International Journal of Applied Earth Observation and Geoinformation, 74, 248–258.

    Article  Google Scholar 

  • Freeman, A., Hensley, S., & Moore, E. (1999). Analysis of radar images of Angkor, Cambodia. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293) (Vol. 5, pp. 2572–2574). Hamburg: IEEE.

  • French, L. (1999). Hierarchies of value at Angkor Wat. Ethnos, 64(2), 170–191. https://doi.org/10.1080/00141844.1999.9981597.

    Article  Google Scholar 

  • Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486. https://doi.org/10.1007/s10040-011-0775-5.

    Article  Google Scholar 

  • Gonnuru, P., & Kumar, S. (2017). PsInSAR based land subsidence estimation of Burgan oil field using TerraSAR-X data. Remote Sensing Applications: Society and Environment, 9(2017), 17–25.

    Google Scholar 

  • González, P. J., & Fernández, J. (2011). Error estimation in multitemporalInSAR deformation time series, with application to Lanzarote, Canary Islands. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008412.

    Article  Google Scholar 

  • Gumerman, G. J., & Lyons, T. R. (1971). Archeological methodology and remote sensing. Science, 172(3979), 126–132. https://doi.org/10.1126/science.172.3979.126.

    Article  Google Scholar 

  • Hall, C. M., Baird, T., James, M., & Ram, Y. (2016). Climate change and cultural heritage: Conservation and heritage tourism in the Anthropocene. Journal of Heritage Tourism, 11(1,SI), 10–24.

    Article  Google Scholar 

  • Hayhoe, R. (2019). The gift of Indian higher learning traditions to the global research university. Asia Pacific Journal of Education, 39(2,SI), 177–189.

    Article  Google Scholar 

  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1–5. https://doi.org/10.1029/2004GL021737.

    Article  Google Scholar 

  • Hopewell, E. F. (1938). Correspondence. Journal of The Royal Central Asian Society, 25(4), 674–675. https://doi.org/10.1080/03068373808730883.

    Article  Google Scholar 

  • Jarus, O. (2018). Angkor Wat: History of Ancient Temple. Future US Inc. Retrieved 9 September, 2020, from https://www.livescience.com/23841-angkor-wat.html.

  • Joshi, V. (2018). Bas reliefs at Angkor Wat siem reap. Retrieved 23 October 2018, from, https://coloursonmypalette.blogspot.com/2018/08/bas-reliefs-at-angkor-wat-siem-reap.html.

  • Kak, S. (1999). The solar equation in Angkor Wat. Indian Journal of History of Science, 34(179), 117–126.

    Google Scholar 

  • Lagios, E., Papadimitriou, P., Novali, F., Sakkas, V., Fumagalli, A., Vlachou, K., & Del Conte, S. (2012). Combined seismicity pattern analysis, DGPS and PSInSAR studies in the broader area of Cephalonia (Greece). Tectonophysics, 524–525, 43–58.

    Article  Google Scholar 

  • Lasaponara, R., & Masini, N. (2011). Satellite remote sensing in archaeology: Past, present and future perspectives. Journal of Archaeological Science, 38(9), 1995–2002. https://doi.org/10.1016/j.jas.2011.02.002.

    Article  Google Scholar 

  • Levin, N., Ali, S., Crandall, D., & Kark, S. (2019). World heritage in danger: Big data and remote sensing can help protect sites in conflict zones. Global Environmental Change, 55, 97–104.

    Article  Google Scholar 

  • Liu, X., Wang, Y., & Yan, S. (2018). Interferometric SAR time series analysis for ground subsidence of the abandoned mining area in North Peixian using sentinel-1A TOPS data. Journal of the Indian Society of Remote Sensing, 46(3), 451–461. https://doi.org/10.1007/s12524-017-0708-4.

    Article  Google Scholar 

  • Locard, H. (2015). The myth of Angkor as an essential component of the khmer rouge utopia. In M. Falser (Ed.), Cultural heritage as civilizing mission: From decay to recovery (pp. 201–222). Cham: Springer.

    Chapter  Google Scholar 

  • Majumdar, S., Smith, R., Butler, J. J., Jr., & Lakshmi, V. (2020). Groundwater withdrawal prediction using integrated multi-temporal remote sensing datasets and machine learning. Water Resources Research. https://doi.org/10.1029/2020WR028059.

    Article  Google Scholar 

  • Mangiameli, M., Candiano, A., Fargione, G., Gennaro, A., & Mussumeci, G. (2020). Multispectral satellite imagery processing to recognize the archaeological features: The NW part of Mount Etna (Sicily, Italy). Mathematical Methods in the Applied Sciences, 43(13), 7640–7646. https://doi.org/10.1002/mma.5990.

    Article  Google Scholar 

  • Meisina, C., Zucca, F., Notti, D., Colombo, A., Cucchi, A., Savio, G., et al. (2008). Geological interpretation of PSInSAR data at regional scale. Sensors, 8(11), 7469–7492. https://doi.org/10.3390/s8117469.

    Article  Google Scholar 

  • Meskell, L. (2002). Negative heritage and past mastering in archaeology. Anthropological Quarterly, 75(3), 557–574. https://doi.org/10.1353/anq.2002.0050.

    Article  Google Scholar 

  • Milillo, P., Giardina, G., Perissin, D., Milillo, G., Coletta, A., & Terranova, C. (2019). Pre-collapse space geodetic observations of critical infrastructure: The Morandi bridge. Genoa: Remote Sensing. https://doi.org/10.3390/rs11121403.

    Book  Google Scholar 

  • Ministry of Tourism. (2018). Tourism statistics report year 2018. Phnom Penh, Cambodia. https://amchamcambodia.net/wp-content/uploads/2019/04/Year_2018.pdf

  • Monroe, J. W. (1995). Angkor Wat: A case study in the legal problems of international cultural resource management. The Journal of Arts Management, Law, and Society, 24(4), 277–286. https://doi.org/10.1080/10632921.1995.9941775.

    Article  Google Scholar 

  • Moore, E., Freeman, T., & Hensley, S. (2007). Spaceborne and airborne radar at Angkor: Introducing new technology to the ancient site. In J. Wiseman & F. El-Baz (Eds.), Remote sensing in archaeology (pp. 185–216). New York, NY: Springer.

    Chapter  Google Scholar 

  • Nicu, I. C. (2017). Natural hazards—a threat for immovable cultural heritage. A review. International Journal of Conservation Science, 8(3), 375–388.

    Google Scholar 

  • Nishigaki, M., Takahashi, S., Takahashi, M., & Maruo, Y. (2013). Groundwater development and management in Siem Reap, Cambodia: Impacts of groundwater pumping on Angkor Wat. In Geotechnical Engineering for the Preservation of Monuments and Historic Sites - Proc. of the 2nd International Symp. on Geotechnical Engineering for the Preservation of Monuments and Historic Sites (pp. 595–601). Napoli, Italy.

  • Parcak, S. H. (2009). Satellite remote sensing for archaeology. Satellite Remote Sensing for Archaeology. https://doi.org/10.4324/9780203881460.

    Article  Google Scholar 

  • Peou, H., Natarajan, I., Tianhua, H., & Philippe, D. (2016). From conservation to sustainable development—a case study of Angkor world heritage site, Cambodia. Journal of Environmental Science and Engineering A, 5(3), 141–155.

    Google Scholar 

  • Perissin, D. (2019a). Coregistration Parameters. SARPROZ Manual. Co-registration process in,one is using only orbits. Retrieved 24 October, 2020, from, https://sarproz.com/manual/coreg_param.html#:~:text=The

  • Perissin, D. (2019b). SARPROZ Software Manual. Retrieved 25 October, 2020, from, https://www.sarproz.com/software-manual/.

  • Priest, A. (1939). Indian Sculpture. The Metropolitan Museum of Art Bulletin, 34(6), 152–158. https://doi.org/10.2307/3256606.

    Article  Google Scholar 

  • Qin, Y., & Perissin, D. (2015). Monitoring ground subsidence in Hong Kong via spaceborne radar: Experiments and validation. Remote Sensing, 7(8), 10715–10736. https://doi.org/10.3390/rs70810715.

    Article  Google Scholar 

  • Qiu, Z., Ma, Y., & Guo, X. (2016). Atmospheric phase screen correction in ground-based SAR with PS technique. SpringerPlus. https://doi.org/10.1186/s40064-016-3262-6.

    Article  Google Scholar 

  • Rasmussen, W. C., & Bradford, G. M. (1977). Ground-water resources of Cambodia. Washington DC: U.S. Government Printing Office.

    Google Scholar 

  • Reeder-Myers, L. A. (2015). Cultural heritage at risk in the twenty-first century: A vulnerability assessment of coastal archaeological sites in the United States. The Journal of Island and Coastal Archaeology, 10(3), 436–445. https://doi.org/10.1080/15564894.2015.1008074.

    Article  Google Scholar 

  • Roberts, T. R. (2002). Fish scenes, symbolism, and kingship in the bas-reliefs of Angkor Wat and the Bayon. Natural History Bulletin of The Siam Society (NHBSS), 50(2), 135–193.

    Google Scholar 

  • Rowland, B. (1964). The world’s image in indian architecture. Journal of the Royal Society of Arts, 112(5099), 795–809.

    Google Scholar 

  • Si, Y., Chen, B., Gong, H., & Gao, M. (2018). Temporal and spatial evolution of land subsidence induced by groundwater exploitation and construction in the Eastern Chaoyang District, Beijing, China. Journal of the Indian Society of Remote Sensing, 46(10), 1657–1665. https://doi.org/10.1007/s12524-018-0821-z.

    Article  Google Scholar 

  • Siedel, H., Pfefferkorn, S., von Plehwe-Leisen, E., & Leisen, H. (2010). Sandstone weathering in tropical climate: Results of low-destructive investigations at the temple of Angkor Wat, Cambodia. Engineering Geology, 115(3), 182–192.

    Article  Google Scholar 

  • Smith, R., Knight, R., & Fendorf, S. (2018). Overpumping leads to California groundwater arsenic threat. Nature Communications, 9(1), 2089. https://doi.org/10.1038/s41467-018-04475-3.

    Article  Google Scholar 

  • Smith, R. G., & Majumdar, S. (2020). Groundwater storage loss associated with land subsidence in Western United States mapped using machine learning. Water Resources Research. https://doi.org/10.1029/2019WR026621.

    Article  Google Scholar 

  • Sok, C. (2017). Angkor water crisis. The UNESCO Courier, 19–22. https://en.unesco.org/courier/2017-april-june/angkor-water-crisis

  • Solari, L., Ciampalini, A., Raspini, F., Bianchini, S., & Moretti, S. (2016). PSInSAR analysis in the pisa urban area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sensing, 8(2), 120.

    Article  Google Scholar 

  • Sonnemann, T. F., O’Reilly, D., Rachna, C., Fletcher, R., & Pottier, C. (2015). The buried ‘towers’ of Angkor Wat. Antiquity, 89(348), 1420–1438.

    Article  Google Scholar 

  • Sonnemann, T. F. (2011). Angkor Underground—Applying GPR to analyse the diachronic structure of a great urban complex. University of Sydney.; Department of Archaeology. Retrieved from https://hdl.handle.net/2123/8069

  • Sophearith, S. (2005). The life of the Rāmāyana in ancient Cambodia: A study of the political, religious and ethical roles of an epic tale in real time (I). Udaya, 6, 93–150.

    Google Scholar 

  • Sophearith, S. (2006). The life of the Rāmāyana in ancient Cambodia: A study of the political, religious and ethical roles of an epic tale in real time (II). Udaya, 7, 45–72.

    Google Scholar 

  • Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., & Ruiz, A. M. (2011). Persistent scattererInSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652–2663.

    Article  Google Scholar 

  • Stark, M. T., Evans, D., Rachna, C., Piphal, H., & Carter, A. (2015). Residential patterning at Angkor Wat. Antiquity, 89(348), 1439–1455.

    Article  Google Scholar 

  • Stencel, R., Gifford, F., & Morón, E. (1976). Astronomy and cosmology at Angkor Wat. Science, 193(4250), 281–287. https://doi.org/10.1126/science.193.4250.281.

    Article  Google Scholar 

  • Tapete, D., Cigna, F., & Donoghue, D. N. M. (2016). “Looting marks” in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sensing of Environment, 178, 42–58. https://doi.org/10.1016/j.rse.2016.02.055.

    Article  Google Scholar 

  • Tu, J., Gu, D., Wu, Y., & Yi, D. (2012). Error modeling and analysis for InSAR spatial baseline determination of satellite formation flying. Mathematical Problems in Engineering, 2012, 140301. https://doi.org/10.1155/2012/140301.

    Article  Google Scholar 

  • UNESCO World Heritage Centre. (2020). World Heritage List. UNESCO. Retrieved 12 October, 2020, from, https://whc.unesco.org/en/list/?&type=cultural.https://whc.unesco.org/en/list/?&type=cultural.

  • Vicari, A., Famiglietti, N. A., Colangelo, G., & Cecere, G. (2019). A comparison of multi temporal interferometry techniques for landslide susceptibility assessment in urban area: an example on stigliano (MT), a town of Southern of Italy. Geomatics, Natural Hazards and Risk, 10(1), 836–852. https://doi.org/10.1080/19475705.2018.1549113.

    Article  Google Scholar 

  • Vilardo, G., Isaia, R., Ventura, G., De Martino, P., & Terranova, C. (2010). InSAR permanent scatterer analysis reveals fault re-activation during inflation and deflation episodes at CampiFlegrei caldera. Remote Sensing of Environment, 114(10), 2373–2383. https://doi.org/10.1016/j.rse.2010.05.014.

    Article  Google Scholar 

  • Wager, J. (1995). Environmental planning for a world heritage site: Case study of Angkor, Cambodia. Journal of Environmental Planning and Management, 38(3), 419–434. https://doi.org/10.1080/09640569512959.

    Article  Google Scholar 

  • Waterton, E., & Smith, L. (2008). Heritage protection for the 21st century. Cultural Trends, 17(3), 197–203. https://doi.org/10.1080/09548960802362157.

    Article  Google Scholar 

  • World Heritage Committee. (1992). Convention concerning the protection of the world cultural and natural heritage. Santa Fe. https://whc.unesco.org/archive/1992/whc-92-conf002-12e.pdf

  • Yang, C.-H., & Soergel, U. (2018). Adaptive 4d Psi-based change detection. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV–3, 245–250.

    Article  Google Scholar 

  • Yogesh, K. (2017). Historic Tamil Nadu temples fallinginto decay: Unesco report Chennai News–Times of India. The Times of India.

  • Zakšek, K., Oštir, K., & Kokalj, Z. (2011). Sky-view factor as a relief visualization technique. Remote Sensing, 3(2), 398–415. https://doi.org/10.3390/rs3020398.

    Article  Google Scholar 

  • Zhang, Y., Ling, F., Foody, G. M., Ge, Y., Boyd, D. S., Li, X., et al. (2019). Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016. Remote Sensing of Environment, 224, 74–91.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the SARPROZ software team for providing the license. The authors are thankful to the German Aerospace Center (DLR) Oberpfaffenhofen for providing TerraSAR-X/TanDEM-X data under the Project Id -NTI_POLI6635 on PolInSAR Tomography for above ground biomass estimation and the Japan Aerospace Exploration Agency (JAXA) for providing the L-band ALOS-2 PALSAR-2 datasets under the proposal number 1408 of RA4 with the title Hydrological parameter retrieval and glacier dynamics study with L-band SAR data. The authors are also grateful to the Alaska Satellite Facility (ASF) for providing ALOS-1 PALSAR-1 data through ASF Vertex Data Search.

Author information

Authors and Affiliations

Authors

Contributions

SK contributed to conceptualization, data processing, formal analysis, manuscript preparation, supervision, methodology, satellite data selection, software, validation, writing—reviewing and editing. VKS contributed to data processing, formal analysis, manuscript preparation. AB was involved in data processing, visualization, investigation, reviewing and editing. PKT was involved in data curation. SA was involved in project administration.

Corresponding author

Correspondence to Shashi Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Vignesh, S.K., Babu, A. et al. PSInSAR-Based Surface Deformation Mapping of Angkor Wat Cultural Heritage Site. J Indian Soc Remote Sens 49, 827–842 (2021). https://doi.org/10.1007/s12524-020-01257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01257-7

Keywords

Navigation