Skip to main content
Log in

Graphene sheet-encased silica/sulfur composite cathode for improved cyclability of lithium-sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The “shuttle effect” of polysulfides is a serious issue, resulting in a decrease in the life-cycle of lithium-sulfur (Li-S) batteries. To inhibit the shuttle effect, a combination of graphene oxide and silica has been adopted in this work. Here, two different ratios of sulfur/silicon dioxide/partially reduced graphene oxide (S/SiO2/prGO - 70:20:10 and 70:10:20) composite materials were prepared via a melt diffusion method and were used as a cathode for a Li-S battery. The wrinkled sheets of partially reduced graphene oxide not only provide a conductive network for electron transport, but also ease the volume changes of active material during cycling. The 20 wt% of prGO present in the S/SiO2/prGO cathode delivers initial discharge capacity of 783 mAh g−1 at 0.2 C and remains at 491 mAh g−1 over 300 cycles, with low capacity decay rate of 0.12% per cycle. The better electrochemical performance indicates that the electrode containing 20 wt% of prGO with silica effectively suppresses the “shuttle effect” of polysulfide dissolution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen G, Li Y, Zhong W, Zheng F, Hu J, Ji X, Liu W, Yang C, Lin Z, Liu M (2020) MOFs-derived porous Mo2C–C nano-octahedrons enable high-performance lithium–sulfur batteries. Energy Storage Mater 25:547–554

    Article  Google Scholar 

  2. Yeon JS, Park SH, Suk J, Lee H, Park HS (2020) Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode. Chem Eng J 382:122946

    Article  CAS  Google Scholar 

  3. He G, Hart CJ, Liang X, Garsuch A, Nazar LF (2014) Stable cycling of a scalable graphene-encapsulated nanocomposite for lithium–sulfur batteries. ACS Appl Mater Inter 6(14):10917–10923

    Article  CAS  Google Scholar 

  4. Lee JS, Kim W, Jang J, Manthiram A (2017) Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries. Adv Energy Mater 7(5):1601943

    Article  CAS  Google Scholar 

  5. Du H, Gui X, Yang R, Lin Z, Liang B, Chen W, Zheng Y, Zhu H, Chen J (2018) In situ sulfur loading in graphene-like nano-cell by template-free method for Li–S batteries. Nanoscale 10(8):3877–3883

    Article  CAS  PubMed  Google Scholar 

  6. He J, Manthiram A (2019) A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater 20:55–70

    Article  Google Scholar 

  7. Shi J, Kang Q, Mi Y, Xiao Q (2019) Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li–S batteries. Electrochim Acta 324:134849

    Article  CAS  Google Scholar 

  8. He J, Manthiram A (2020) Long-life, high-rate lithium–sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv Energy Mater 10(3):1903241

    Article  CAS  Google Scholar 

  9. Yan L, Luo N, Kong W, Luo S, Wu H, Jiang K, Li Q, Fan S, Duan W, Wang J (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177

    Article  CAS  Google Scholar 

  10. Luo L, Qin X, Wu J, Liang G, Li Q, Liu M, Kang F, Chen G, Li B (2018) An interwoven MoO3@CNT scaffold interlayer for high-performance lithium–sulfur batteries. J Mater Chem A 6(18):8612–8619

    Article  CAS  Google Scholar 

  11. Ding ZW, Zhao DL, Yao RR, Li C, Cheng XW, Hu T (2018) Polyaniline@ spherical ordered mesoporous carbon/sulfur nanocomposites for high-performance lithium-sulfur batteries. Int J Hydrog Energy 43(22):10502–10510

    Article  CAS  Google Scholar 

  12. He J, Chen Y, Lv W, Wen K, Xu C, Zhang W, Qin W, He W (2016) Three-dimensional CNT/graphene–Li2S aerogel as freestanding cathode for high-performance Li–S batteries. ACS Energy Lett 1(4):820–826

    Article  CAS  Google Scholar 

  13. Zhang Y, Sun L, Li H, Tan T, Li J (2018) Porous three-dimensional reduced graphene oxide for high-performance lithium-sulfur batteries. J Alloys Compd 739:290–297

    Article  CAS  Google Scholar 

  14. Li X, Guo G, Qin N, Deng Z, Lu Z, Shen D, Zhao X, Li Y, Su BL, Wang HE (2018) SnS2/TiO2 nanohybrids chemically bonded on nitrogen-doped graphene for lithium–sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale 10(33):15505–15512

    Article  CAS  PubMed  Google Scholar 

  15. He J, Bhargav A, Manthiram A (2019) Three-dimensional Fe3O4/N-graphene sponge as an efficient organosulfide host for high-performance lithium-organosulfur batteries. Energy Storage Mater 23:88–94

    Article  Google Scholar 

  16. Luo R, Lu Y, Hou X, Yu Q, Wu N, Peng T, Yan H, Liu X, Kim JK, Luo Y (2018) Evolution of hollow N-doped mesoporous carbon microspheres from outdated milk as sulfur cathodes for lithium-sulfur batteries. ChemistrySelect 3(14):3952–3957

    Article  CAS  Google Scholar 

  17. Dhawa T, Chattopadhyay S, De G, Mahanty S (2017) In situ mg/MgO-embedded mesoporous carbon derived from magnesium 1, 4-benzenedicarboxylate metal organic framework as sustainable Li–S battery cathode support. ACS omega 2(10):6481–6491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang J, Liu Y, Cheng M, Zhao H, Wang J, Zhao Z, Duan X, Wang C, Wang J (2019) Hierarchical porous carbon-graphene-based lithium–sulfur batteries. Electrochim Acta 318:161–168

    Article  CAS  Google Scholar 

  19. Cai J, Wu C, Yang S, Zhu Y, Shen PK, Zhang K (2017) Templated and catalytic fabrication of N-doped hierarchical porous carbon–carbon nanotube hybrids as host for lithium–sulfur batteries. ACS Appl Mater Inter 9(39):33876–33886

    Article  CAS  Google Scholar 

  20. Kim PJH, Kim K, Pol VG (2018) Towards highly stable lithium sulfur batteries: surface functionalization of carbon nanotube scaffolds. Carbon 131:175–183

    Article  CAS  Google Scholar 

  21. Urita K, Fujimori T, Notohara H, Moriguchi I (2018) Direct observation of electrochemical lithium–sulfur reaction inside carbon nanotubes. ACS Appl Energy Mater 1(2):807–813

    Article  CAS  Google Scholar 

  22. Zhang XQ, He B, Li WC, Lu AH (2018) Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res 11(3):1238–1246

    Article  CAS  Google Scholar 

  23. Kang W, Fan L, Deng N, Zhao H, Li Q, Naebe M, Yan J, Cheng B (2018) Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem Eng J 333:185–190

    Article  CAS  Google Scholar 

  24. Chang N, Zhou C, Fu H, Zhao Y, Shui J (2017) One-pot synthesis of functionalized holey graphene/sulfur composite for lithium–sulfur batteries. Adv Mater Interfaces 4(21):1700783

    Article  CAS  Google Scholar 

  25. Zhang Y, Gao Z, Song N, He J, Li X (2018) Graphene and its derivatives in lithium–sulfur batteries. Mater Today Energy 9:319–335

    Article  Google Scholar 

  26. Shi P, Wang Y, Liang X, Sun Y, Cheng S, Chen C, Xiang H (2018) Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustain Chem Eng 6(8):9661–9670

    Article  CAS  Google Scholar 

  27. Pang Q, Liang X, Kwok CY, Nazar LF (2015) The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J Electrochem Soc 162(14):A2567–A2576

    Article  CAS  Google Scholar 

  28. Radhika G, Krishnaveni K, Kalaiselvi C, Subadevi R, Sivakumar M (2019) Sway of MnO2 with poly (acrylonitrile) in the sulfur-based electrode for lithium–sulfur batteries. Polym Bull 1–13

  29. He ZJ, Tang LB, Wang JL, An CS, Xiao B, Zheng JC (2019) Synthesis and characterization of a sulfur/TiO2 composite for Li-S battery. Ionics 25(1):9–15

    Article  CAS  Google Scholar 

  30. Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA (2017) Chemical bonding and physical trapping of sulfur in mesoporous Magnéli Ti4O7 microspheres for high-performance Li–S battery. Adv Energy Mater 7(4):1601616

    Article  CAS  Google Scholar 

  31. Rehman S, Guo S, Hou Y (2016) Rational design of Si/SiO2@ hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li–S battery. Adv Mater 28(16):3167–3172

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Liu B, Guo P, Shang X, Lv M, Liu D, He D (2018) Enhanced electrochemical kinetics in lithium-sulfur batteries by using carbon nanofibers/manganese dioxide composite as a bifunctional coating on sulfur cathode. Electrochim Acta 269:180–187

    Article  CAS  Google Scholar 

  33. Rajkumar P, Diwakar K, Gnanamuthu RM, Subadevi R, Sivakumar M (2019) Investigations on partially reduced graphene oxide capped sulfur/polyaniline composite as positive electrode material for lithium-sulfur battery. Mater Res Express 6(9):094005

    Article  CAS  Google Scholar 

  34. Li J, Guo J, Zeng L, Huang Y, Peng R (2016) Improving lithium–sulfur battery performance by using ternary hybrid cathode material. RSC Adv 6(32):26630–26636

    Article  CAS  Google Scholar 

  35. Rajkumar P, Diwakar K, Radhika G, Krishnaveni K, Subadevi R, Sivakumar M (2019) Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161:37–48

    Article  CAS  Google Scholar 

  36. Wang C, Shaw LL (2014) On synthesis of Fe2SiO4/SiO2 and Fe2O3/SiO2 composites through sol–gel and solid-state reactions. J Sol-Gel Sci Techn 72(3):602–614

    Article  CAS  Google Scholar 

  37. Li H, Sun L, Zhang Y, Tan T, Wang G, Bakenov Z (2017) Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem 26(6):1276–1281

    Article  Google Scholar 

  38. Zhang J, Li H, Lin Z, Tang Q, Liang Z, Tang P, Tong Y, Pan Y (2018) Preparation of mesoporous carbon for improved-performance lithium-sulfur battery. Ionics 24(4):1057–1064

    Article  CAS  Google Scholar 

  39. Hao Y, Xiong D, Liu W, Fan L, Li D, Li X (2017) Controllably designed “vice-electrode” interlayers harvesting high performance lithium sulfur batteries. ACS Appl Mater Inter 9(46):40273–40280

    Article  CAS  Google Scholar 

  40. Mukkabla R, Meduri P, Deepa M, Shivaprasad SM, Ghosal P (2017) Sulfur enriched carbon nanotubols with a poly (3, 4-ethylenedioxypyrrole) coating as cathodes for long-lasting Li-S batteries. J Power Sources 342:202–213

    Article  CAS  Google Scholar 

  41. Wu F, Li J, Tian Y, Su Y, Wang J, Yang W, Li N, Chen S, Bao L (2015) 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Sci Rep 5:13340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng F, Rujisamphan N, Liu C, Maezono Y, Hawkins SC, Huynh CP, Ismat Shah S, Ni C (2012) Grafting polymer coatings onto the surfaces of carbon nanotube forests and yarns via a photon irradiation process. Appl Phys Lett 100(21):213109

    Article  CAS  Google Scholar 

  43. Rajkumar P, Diwakar K, Subadevi R, Gnanamuthu RM, Sivakumar M (2019) Sulfur cloaked with different carbonaceous materials for high performance lithium sulfur batteries. Curr Appl Phys 19(8):902–909

    Article  Google Scholar 

  44. Zhang Y, Peng Y, Wang Y, Li J, Li H, Zeng J, Wang J, Hwang BJ, Zhao J (2017) High sulfur-containing carbon polysulfide polymer as a novel cathode material for lithium-sulfur battery. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  45. He J, Luo L, Chen Y, Manthiram A (2017) Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv Mater 29(34):1702707

    Article  CAS  Google Scholar 

  46. Li S, Warzywoda J, Wang S, Ren G, Fan Z (2017) Bacterial cellulose derived carbon nanofiber aerogel with lithium polysulfide catholyte for lithium–sulfur batteries. Carbon 124:212–218

    Article  CAS  Google Scholar 

  47. He J, Zhou K, Chen Y, Xu C, Lin J, Zhang W (2016) Wrinkled sulfur@graphene microspheres with high sulfur loading as superior-capacity cathode for Li-S batteries. Mater Today Energy 1:11–16

    Article  Google Scholar 

  48. Krishnaveni K, Subadevi R, Raja M, PremKumar T, Sivakumar M (2018) Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium-sulfur batteries. J Appl Polym Sci 135(34):46598

    Article  CAS  Google Scholar 

  49. Chen L, Zhou H, Fu C, Chen Z, Xu C, Kuang Y (2016) Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium-sulfur batteries. Int J Hydrog Energy 41(47):21850–21860

    Article  CAS  Google Scholar 

  50. Wang C, Sawicki M, Emani S, Liu C, Shaw LL (2015) Na3MnCO3PO4–a high capacity, multi-electron transfer redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328

    Article  CAS  Google Scholar 

  51. Wang C, Sawicki M, Kaduk JA, Shaw LL (2015) Roles of processing, structural defects and ionic conductivity in the electrochemical performance of Na3MnCO3PO4 cathode material. J Electrochem Soc 162(8):A1601

    Article  CAS  Google Scholar 

  52. Wu J, Zhang Q, Li M, Yan J, Zhang Y, Liu J, Wu Y (2019) Nitrogen, sulfur-codoped micro–mesoporous carbon derived from boat-fruited sterculia seed for robust lithium–sulfur batteries. RSC Adv 9(28):15715–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu R, Chen S, Deng J, Huang X, Song Y, Gan R, Wan X, Wei Z (2018) Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries. J Energy Chem 27(6):1661–1667

    Article  Google Scholar 

  54. Karuppiah D, Palanisamy R, Ponnaiah A, Liu WR, Huang CH, Rengapillai S, Marimuthu S (2020) Eggshell-membrane-derived carbon coated on Li2FeSiO4 cathode material for Li-ion batteries. Energies 13(4):786

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors from Alagappa University acknowledge the financial support by DST-SERB, New Delhi under the physical sciences grant award number EMR/2016/006302. Also, all the authors gratefully acknowledge the extension of the use of analytical facilities in the Department of Physics, Alagappa University, under the PURSE and FIST programme, sponsored by the Department of Science and Technology (DST), Special Assistance Programme (SAP) sponsored by the University Grants Commission (UGC), New Delhi, Govt. of India, and Ministry of Human Resource Development RUSA–Phase 2.0 grant award number Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Dept. of Education, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Subadevi or M. Sivakumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Graphene sheets wrapped sulfur/SiO2 composite were prepared in two different ratios by melt diffusion.

2. The combined effect of prGO and SiO2 is able to suppress shuttling using physical and chemical adsorption.

3. A small amount of polysulfide was retained through the oxygen functional group of prGO sheets.

4. The 20wt% prGO-based sulfur/SiO2 composite exhibits 783 and 491 mAh g−1at the initial and 300th cycle, respectively.

Electronic supplementary material

ESM 1

(DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, P., Diwakar, K., Subadevi, R. et al. Graphene sheet-encased silica/sulfur composite cathode for improved cyclability of lithium-sulfur batteries. J Solid State Electrochem 25, 939–948 (2021). https://doi.org/10.1007/s10008-020-04747-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04747-3

Keywords

Navigation