Skip to main content
Log in

Electrochemical performance of magnetic nanoparticle-decorated reduced graphene oxide (MRGO) in various aqueous electrolyte solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The objective of this work is twofold: (1) to improve the electrochemical performance of reduced graphene oxide (RGO) by decorating RGO sheets with magnetic nanoparticles (MNPs) and (2) to evaluate the electrochemical performance of RGO and MNP-decorated RGO (MRGO) in various aqueous electrolyte solutions (phosphate buffer solution (PBS) containing ferricyanide, PBS containing ferricyanide and KCl, Na2SO4, and KOH). The morphological and structural characteristics of solvothermal synthesized RGO and MRGO revealed the decoration of phase pure Fe3O4 nanoparticles on RGO sheets. In FC-PBS-KCl electrolyte solution, MRGO showed higher redox peak current (83.89 μA) and lower peak potential separation (0.11 V) at 50 mV s−1 scan rate compared with that in FC-PBS electrolyte solution. MRGO showed 15.5% higher peak current than that for the RGO in FC-PBS-KCl electrolyte solution. Moreover, the peak current for MRGO in FC-PBS-KCl was increased by 30% when compared with that in FC-PBS electrolyte solution. These results suggest that MRGO in FC-PBS-KCl electrolyte solution can be a good electron pathway between electrode and electrolyte solution for sensing applications. On the other hand, in both Na2SO4 and KOH electrolyte solution, RGO and MRGO showed supercapacitive behavior. In KOH, MRGO exhibited higher specific capacitance (180 Fg−1 at 3 A g−1) and superior cyclic stability (87% after 2000 cycles) compared with that in Na2SO4. MRGO showed 219% increase in specific capacitance than that of the RGO in KOH electrolyte solution. The superior electrochemical performance of MRGO compared with that of RGO is attributed to the synergistic effect of conductivity of RGO and redox activity of MNPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma S, Nam K, Yoon W, Yang X (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178(1):483–489

    Article  CAS  Google Scholar 

  2. Arie AA, Song JO, Lee JK (2009) Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries. Mater Chem Phys 113(1):249–254

    Article  CAS  Google Scholar 

  3. Yan JA, Chou MY (2010) Oxidation functional groups on graphene: structural and electronic properties. Phys Rev B - Condens Matter Mater Phys 82(12)

  4. Ali MA, Kamil Reza K, Srivastava S, Agrawal VV, John R, Malhotra BD (2014) Lipid-lipid interactions in aminated reduced graphene oxide interface for biosensing application. Langmuir 30(14):4192–4201

    Article  CAS  PubMed  Google Scholar 

  5. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics (Kiel) 25(4):1419–1445

    Article  CAS  Google Scholar 

  6. Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors (Switzerland) 15(9):22490–22508

    Article  CAS  Google Scholar 

  7. Borenstein A, Hanna O, Attias R, Luski S (2017) Carbon-based composite materials for supercapacitor electrodes : a review. J Mater Chem A Mater Energy Sustain 5(25):12653–12672

    Article  CAS  Google Scholar 

  8. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49

    Article  CAS  Google Scholar 

  9. Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2017) Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sensors Actuators B Chem 253:879–892

    Article  CAS  Google Scholar 

  10. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon N Y 50(9):3210–3228

    Article  CAS  Google Scholar 

  11. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157

    Article  CAS  PubMed  Google Scholar 

  12. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater:1089–1115

  13. Schniepp HC, Li J, Mcallister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 2:8535–8539

    Article  CAS  Google Scholar 

  14. Schwenke AM, Hoeppener S, Schubert US (2015) Microwave synthesis of carbon nanofibers-the influence of MW irradiation power, time, and the amount of catalyst. J Mater Chem A 3(47):23778–23787

    Article  CAS  Google Scholar 

  15. Dubin S, Gilje S, Wang K, et al (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. Am Chem Soc 4:3845–3852

  16. Sinan N, Unur E (2016) Fe3O4/carbon nanocomposite: investigation of capacitive & magnetic properties for supercapacitor applications. Mater Chem Phys 183:571–579

    Article  CAS  Google Scholar 

  17. Li L, Gao P, Gai S, He F, Chen Y, Zhang M, Yang P (2016) Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim Acta 190:566–573

    Article  CAS  Google Scholar 

  18. Zhang X, Sun X, Chen Y, Zhang D, Ma Y (2012) One-step solvothermal synthesis of graphene / Mn 3 O 4 nanocomposites and their electrochemical properties for supercapacitors. Mater Lett 68:336–339

    Article  CAS  Google Scholar 

  19. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen ST, Jung I, Dikin DA et al (2007) Graphene−silica composite thin films as transparent conductors. Nano Lett 7:1888–1892

    Article  PubMed  CAS  Google Scholar 

  21. Jadhav HS, Thorat GM, Kale BB, Seo JG (2017) Mesoporous Mn reduced graphene oxide (rGO) composite with enhanced electrochemical performance for Li-ion battery. Dalton Trans 46(30):9777–9783

    Article  CAS  PubMed  Google Scholar 

  22. Juan Yang A, Yu C (2016) Electroactive Edge site-enriched nickel-cobalt sulfide into graphene Frameworks for high-performance asymmetric supercapacitors. R Soc Chem 9:1299–1307

    Google Scholar 

  23. Zhao Y, Song X, Song Q, Yin Z (2012) A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. R Soc Chem:6710–6719

  24. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide-metal/metal oxide composites : facile synthesis and application in water purification. J Hazard Mater 186(1):921–931

    Article  CAS  PubMed  Google Scholar 

  25. Chang MS, Kim T, Kang JH et al (2015) The effect of surface characteristics of reduced graphene oxide on the performance of a pseudocapacitor. 2D Mater 2:14007

    Article  CAS  Google Scholar 

  26. Usman AA, Mashuri (2019) Magnetic properties of rGO/Fe3O4 microparticles composites based on natural materials. In: AIP Conference Proceedings

  27. Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121(14):7573–7583

    Article  CAS  Google Scholar 

  28. Liang C, Zhai T, Wang W, Chen J, Zhao W, Lu X, Tong Y (2014) Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J Mater Chem A 2(20):7214–7220

    Article  CAS  Google Scholar 

  29. Waifalkar PP, Chougale AD, Kollu P, Patil PS, Patil PB (2018) Magnetic nanoparticle decorated graphene based electrochemical nanobiosensor for H2O2 sensing using HRP. Colloids Surf B: Biointerfaces 167:425–431

    Article  CAS  PubMed  Google Scholar 

  30. Wasiński K, Walkowiak M, Półrolniczak P, Lota G (2015) Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device. J Power Sources 293:42–50

    Article  CAS  Google Scholar 

  31. Yu L, Wu H, Wu B (2014) Magnetic Fe3 O4-reduced graphene oxide nano-composites-based electrochemical biosensing. Nano Lett 6(3):258–267

    Article  Google Scholar 

  32. Hoan NTV, Thu NTA, Van Duc H et al (2016) Fe3O4/Reduced graphene oxide nanocomposite: synthesis and its application for toxic metal ion removal. J Chemother 2016

  33. Qin Y, Long M, Tan B, Zhou B (2014) RhB adsorption performance of magnetic adsorbent Fe3O4/RGO Composite and its regeneration through a Fenton-like reaction. Nano-Micro Lett 6(2):125–135

    Article  CAS  Google Scholar 

  34. Liu S, Zhou L, Yao L, Chai L, Li L, Zhang G, Kankan, Shi K (2014) One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature. J Alloys Compd 612:126–133

    Article  CAS  Google Scholar 

  35. Zhu S, Chen M, Ren W, Yang J, Qu S, Li Z, Diao G (2015) Microwave assisted synthesis of α-Fe2O3/reduced graphene oxide as anode material for high performance lithium ion batteries. New J Chem 39(10):7923–7931

    Article  CAS  Google Scholar 

  36. Liu Y, Guan M, Feng L, Deng S (2013) Facile and straightforward synthesis of superparamagnetic reduced graphene oxide – Fe 3 O 4 hybrid composite by a solvothermal reaction. Nanotechnology:025604

  37. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6(69):64993–65011

    Article  CAS  Google Scholar 

  38. Ullah W, Anwar AW, Majeed A et al (2015) Cost-effective and facile development of Fe 3 O 4 –reduced graphene oxide electrodes for supercapacitors. Mater Technol 30:144–149

    Article  CAS  Google Scholar 

  39. Li T, Qin A, Yang L, Chen J, Wang Q, Zhang D, Yang H (2017) In situ grown Fe 2 O 3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries. ACS Appl Mater Interfaces 9(23):19900–19907

    Article  CAS  PubMed  Google Scholar 

  40. Yang S, Cao C, Li G, Sun Y, Huang P, Wei F, Song W (2015) Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Res 8(4):1339–1347

    Article  CAS  Google Scholar 

  41. Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y (2014) Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors (Switzerland) 14(8):15227–15243

    Article  CAS  Google Scholar 

  42. Gao Y, Wu D, Wang T, Jia D, Xia W, Lv Y, Cao Y, Tan Y, Liu P (2016) One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor. Electrochim Acta 191:275–283

    Article  CAS  Google Scholar 

  43. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun 10(10):1652–1655

    Article  CAS  Google Scholar 

  44. Barzegar F, Momodu DY, Fashedemi OO, Bello A, Dangbegnon JK, Manyala N (2015) Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv 5(130):107482–107487

    Article  CAS  Google Scholar 

  45. Zhou D, Zhang TL, Han BH (2013) One-step solvothermal synthesis of an iron oxide-graphene magnetic hybrid material with high porosity. Microporous Mesoporous Mater 165:234–239

    Article  CAS  Google Scholar 

  46. Habte AT, Ayele DW, Hu M (2019) Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv Mater Sci Eng 2019:1–9

    Article  CAS  Google Scholar 

  47. Online VA, Feng Z, Zhang C et al (2013) RSC Advances An easy and eco-friendly method to prepare reduced additive for LiFePO 4 cathode materials 3. R Soc Chem 3(4408–44):4408–4415

    Google Scholar 

  48. Shalaby A, Nihtianova D, Markov P et al (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg Chem Commun 47:291–295

    Google Scholar 

  49. Shen X, Wu J, Bai S, Zhou H (2010) One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites. J Alloys Compd 506(1):136–140

    Article  CAS  Google Scholar 

  50. Hardiansyah A, Rahimi Chaldun E, Fadyah Idzni A (2018) Magnetic reduced graphene oxide as advanced materials for adsorption of metal ions. J Sains Mater Indones 18(4):185

    Article  Google Scholar 

  51. Li Y, Zhao C, Wen Y, Wang Y, Yang Y (2018) Adsorption performance and mechanism of magnetic reduced graphene oxide in glyphosate contaminated water. Environ Sci Pollut Res 25(21):21036–21048

    Article  CAS  Google Scholar 

  52. Yan F, Ding J, Liu Y, Wang Z, Cai Q, Zhang J (2015) Fabrication of magnetic irregular hexagonal-Fe3O4 sheets/reduced graphene oxide composite for supercapacitors. Synth Met 209:473–479

    Article  CAS  Google Scholar 

  53. Kumar R, Singh RK, Vaz AR, Savu R, Moshkalev SA (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9(10):8880–8890

    Article  CAS  PubMed  Google Scholar 

  54. Devi P, Sharma C, Kumar P, Kumar M, Bansod BKS, Nayak MK, Singla ML (2017) Selective electrochemical sensing for arsenite using rGO/Fe 3 O 4 nanocomposites. J Hazard Mater 322(Pt A):85–94

    Article  CAS  PubMed  Google Scholar 

  55. Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22(12):5478–5485

    Article  CAS  Google Scholar 

  56. Chandel M, Moitra D, Makkar P, Sinha H, Hora HS, Ghosh NN (2018) Synthesis of multifunctional CuFe 2 O 4 -reduced graphene oxide nanocomposite: an efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures. RSC Adv 8(49):27725–27739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alam M, Karmakar K, Pal M, Mandal K (2016) Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires. RSC Adv 6(115):114722–114726

    Article  CAS  Google Scholar 

  58. Liu J, Dong S, He Q, Yang S, Xie M, Deng P, Xia Y, Li G (2019) Facile preparation of Fe3O4/C nanocomposite and its application for cost-effective and sensitive detection of tryptophan. Biomolecules 9(6)

  59. Cai Z, Ye Y, Wan X et al (2019) Morphology–dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials 9:1–19

    Google Scholar 

  60. Radhakrishnan S, Krishnamoorthy K, Sekar C et al (2014) Applied Catalysis B : Environmental A highly sensitive electrochemical sensor for nitrite detection based on Fe 2 O 3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148–149:22–28

    Article  CAS  Google Scholar 

  61. Srivastava S, Kumar V, Ali MA, Solanki PR, Srivastava A, Sumana G, Saxena PS, Joshi AG, Malhotra BD (2013) Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5(7):3043–3051

    Article  CAS  PubMed  Google Scholar 

  62. Thu NTA, Van Duc H, Hai Phong N et al (2018) Electrochemical determination of paracetamol using Fe3O4/reduced graphene-oxide-based electrode. J Nanomater 2018

  63. Kiryushov VN, Skvortsova LI, Aleksandrova TP (2011) Electrochemical behavior of the system ferricyanide-ferrocyanide at a graphite-epoxy composite electrode. J Anal Chem 66(5):510–514

    Article  CAS  Google Scholar 

  64. Xie Z, Xu J, Xie F, Xiong S (2016) Electrochemical detection of as(III) by a rGO/Fe 3 O 4 -modified screen-printed carbon electrode. Anal Sci 32(10):1053–1058

    Article  CAS  PubMed  Google Scholar 

  65. Zhang X, Wang X, Jiang L, Wu H, Wu C, Su J (2012) Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J Power Sources 216:290–296

    Article  CAS  Google Scholar 

  66. Morris JB, Schempf JM (1959) Voltammetric studies at the graphite electrode in quiet solutions. Anal Chem 31(2):286–291

    Article  CAS  Google Scholar 

  67. Liao W, Guo C, Sun L et al (2015) The electrochemical behavior of nafion/reduced graphene oxide modified carbon electrode surface and its application to ascorbic acid determination. Int J Electrochem Sci 10:5747–5755

    CAS  Google Scholar 

  68. Ghosh S, Mathews T, Gupta B, Das A, Gopala Krishna N, Kamruddin M (2017) Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano-Struct Nano-Objects 10:42–50

    Article  CAS  Google Scholar 

  69. Wang Z, Ma C, Wang H, Liu Z, Hao Z (2013) Facilely synthesized Fe2O3-graphene nanocomposite as novel electrode materials for supercapacitors with high performance. J Alloys Compd 552:486–491

    Article  CAS  Google Scholar 

  70. Cheng JP, Shou QL, Wu JS, Liu F, Dravid VP, Zhang XB (2013) Influence of component content on the capacitance of magnetite/reduced graphene oxide composite. J Electroanal Chem 698:1–8

    Article  CAS  Google Scholar 

  71. Ramachandran R, Saranya M, Velmurugan V, Raghupathy BPC, Jeong SK, Grace AN (2015) Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications. Appl Energy 153:22–31

    Article  CAS  Google Scholar 

  72. Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe 2O 3-graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16(6):2095–2102

    Article  CAS  Google Scholar 

  73. Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 114:674–680

    Article  CAS  Google Scholar 

  74. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1(10):3807–3835

    Article  Google Scholar 

Download references

Funding

The study was funded by the Science and Engineering Research Board, Department of Science and Technology (DST-SERB), Government of India (no. EMR/2017/001810) and Human Resources Development Program (no. 20194030202470) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Patil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 10109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.M., Shingte, S.R., Karade, V.C. et al. Electrochemical performance of magnetic nanoparticle-decorated reduced graphene oxide (MRGO) in various aqueous electrolyte solutions. J Solid State Electrochem 25, 927–938 (2021). https://doi.org/10.1007/s10008-020-04866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04866-x

Keywords

Navigation