Skip to main content
Log in

Evaluation of Nitriding, Nitrocarburizing, Organosilicon Interlayer, Diamond-Like Carbon Film and Duplex Plasma Treatment in the Wear and Corrosion Resistance of AISI 4340 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Duplex treatments are performed to promote an additional property to a previous surface treatment to improve wear and corrosion resistance of the material, like the DLC film (diamond-like carbon) deposited on nitriding or nitrocarburizing surfaces on the AISI 4340 steel. The purpose of this work is to study the effect of the duplex treatment (nitriding + DLC and nitrocarburizing + DLC film deposition) on the wear and corrosion resistance of AISI 4340 steel. The nitrocarburizing treatments by plasma were performed with 80% N2 + 17% H2 + 3% CH4 at 400, 450, 500, 525 and 550 °C for 5 h. The nitriding treatment by plasma at 450 °C was performed with 80% N2 + 20% H2 for 5 h. The interlayer deposition was performed using hexamethyldisiloxane as a precursor. The deposition of DLC film was performed by DC-PECVD method using 90% CH4 + 10% Ar at 200 °C for 2 h. The duplex treatment was performed at the optimum temperature of the nitrocarburizing process. Micro-abrasive wear tests by fixed ball, and corrosion tests showed that all material treated presented lower wear volume and higher corrosion resistance than untreated material, but the duplex treatments provided greater wear and corrosion resistance than that observed on materials treated with only one type of treatment, showing that duplex treatment improves surface resistance of the AISI 4340 steel. The nitrocarburizing + DLC duplex treatment presented greater wear and corrosion resistance than nitriding + DLC duplex treatment, evidencing the great positive effect of carbon added to the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.S.M. Cardoso, A.J. Abdalla, M.S.F. Lima, V.H.B. Scheid, and C.A.R.P. Baptista, Surface Heat Treatment of Steel 4340 and 300M Steel After Laser Welding, Rev. Bras. Apl. Vac., 2015, 34(1), p 5–13. https://doi.org/10.17563/rbav.v34i1.939

    Article  CAS  Google Scholar 

  2. R.M. Anazawa, A.J. Abdalla, T.M. Hashimoto, and M.S. Pereira, Comparative Study of Mechanical Properties of Steels 300M and 4340 Submitted to Treatments Isothermal and Intercritical, Rev. Bras. Apl. Vac., 2012, 31(1–2), p 32. https://doi.org/10.17563/rbav.v31i1-2.918

    Article  Google Scholar 

  3. A.S.M. Handbook, Properties and Selection: Irons, Steels, and High- Performance Alloys, v I, 10th ed., Metals Handbook, Ohio, 1990, p 2521p

    Google Scholar 

  4. H. Kovacı, Ö. Baran, A.F. Yetim, Y.B. Bozkurt, L. Kara, and A. Çelik, The Friction and Wear Performance of DLC Coatings Deposited on Plasma Nitrided AISI, 4140 Steel by Magnetron Sputtering Under Air and Vacuum Conditions, Surf. Coat. Technol., 2018, https://doi.org/10.1016/j.surfcoat.2018.05.084

    Article  Google Scholar 

  5. T. Morita, Y. Hirano, K. Asakura, T. Kumakiri, M. Ikenaga, and C. Kagaya, Effects of Plasma Carburizing and DLC Coating on Friction-Wear Characteristics, Mechanical Properties and Fatigue Strength of Stainless Steel, Mater. Sci. Eng. A, 2012, 558, p 349–355. https://doi.org/10.1016/j.msea.2012.08.011

    Article  CAS  Google Scholar 

  6. J. Robertson, Diamond-Like Amorphous Carbon, Mater. Sci. Eng. R, 2002, 37(4–6), p 129–138. https://doi.org/10.1016/s0927-796x(02)00005-0

    Article  Google Scholar 

  7. L.S. Almeida, A.R.M. Souza, L.H. Costa, E.C. Rangel, M.D. Manfrinato, and L.S. Rossino, Effect of Nitrogen in the Properties of Diamond-like Carbon (DLC) Coating on Ti6Al4V Substrate, Mater. Res. Express., 2020, 7(6), p 1–19. https://doi.org/10.1088/2053-1591/ab94fb

    Article  CAS  Google Scholar 

  8. V.S. Sundaram, Diamond like Carbon Film as a Protective Coating for High Strength Steel and Titanium Alloy, Surf. Coat. Technol., 2006, 201, p 2707–2711. https://doi.org/10.1016/j.surfcoat.2006.05.046

    Article  CAS  Google Scholar 

  9. R.L.O. Basso, R.J. Candal, C.A. Figueroa, D. Wisnivesky, and F. Alvarez, Influence of Microstructure on the Corrosion Behavior of Nitrocarburized AISI, H13 Tool Steel Obtained by Pulsed DC Plasma, Surf. Coat. Technol., 2009, 203, p 1293–1297. https://doi.org/10.1016/j.surfcoat.2008.10.006

    Article  CAS  Google Scholar 

  10. T. Bell, Y. Sun, and A. Suhadi, Environmental and Technical Aspects of Plasma Nitrocarburizing, Vacuum, 2000, 59(1), p 14–23. https://doi.org/10.1016/S0042-207X(00)00250-5

    Article  CAS  Google Scholar 

  11. F.A.P. Fernandes, S.C. Heck, C.A. Picone, and L.C. Casteletti, On the Wear and Corrosion of Plasma Nitrided AISI, H13, Surf. Coat. Technol., 2020, 381, p 125216. https://doi.org/10.1016/j.surfcoat.2019.125216

    Article  CAS  Google Scholar 

  12. E. Boztepe, A.C. Alves, E. Ariza, L.A. Rocha, N. Cansever, and F. Toptan, A Comparative Investigation of the Corrosion and Tribocorrosion Behaviour of Nitrocarburized, Gas Nitrided, Fluidized-Bed Nitrided, and Plasma Nitrided Plastic Mould Steel, Surf. Coat. Technol., 2018, 334, p 116–123. https://doi.org/10.1016/j.surfcoat.2017.11.033

    Article  CAS  Google Scholar 

  13. M.H. Sohi, M. Ebrahimi, A.H. Raouf, and F. Mahboubi, Effect of Plasma Nitrocarburizing Temperature on the Wear Behavior of AISI, 4140 Steel, Surf. Coat. Technol., 2010, 1, p S84–S89. https://doi.org/10.1016/j.surfcoat.2010.04.054

    Article  CAS  Google Scholar 

  14. E.P. Ilic, A. Pardo, T. Suter, S. Mischler, P. Schmutz, and R.A. Hauert, Methodology for Characterizing the Electrochemical Stability of DLC Coated Interlayers and Interfaces, Surf. Coat. Technol., 2019, 1, p 402–413. https://doi.org/10.1016/j.surfcoat.2019.07.055

    Article  CAS  Google Scholar 

  15. A. M. Oliveira. Estudo da influência da nitretação e nitrocementação por plasma sobre a redução da porosidade superficial em amostras de ferro puro sinterizados. 1998. Masters dissertation—Federal University of Santa Catarina, Graduate Program in Mechanical Engineering, Florianópolis, 1998. https://repositorio.ufsc.br/handle/123456789/158202. Accessed 18 Aug 2019

  16. J.O. Pereira Neto, R.O. da Silva, E.H. da Silva, J.A. Moreto, R.M. Bandeira, M.D. Manfrinato, and L.S. Rossino, Wear and Corrosion Study of Plasma Nitriding F53 Super Duplex Stainless Steel, Mater. Res., 2016, 19(6), p 1241–1252. https://doi.org/10.1590/1980-5373-mr-2015-0656

    Article  CAS  Google Scholar 

  17. A. Celik, M. Karakan, A. Alsaran, and I. Efeoglu, The Investigation of Structural, Mechanical and Tribological Properties of Plasma Nitrocarburized AISI, 1020 Steel, Surf. Coat. Technol., 2005, 200, p 1926–1932. https://doi.org/10.1016/j.surfcoat.2005.08.027

    Article  CAS  Google Scholar 

  18. E.L. Dalibón, L. Escalada, S. Simison, C. Forsich, D. Heim, and S.P. Brühl, Mechanical and Corrosion Behavior of Thick and Soft DLC Coatings, Surf. Coat. Technol., 2016, 1, p 101–109. https://doi.org/10.1016/j.surfcoat.2016.10.006

    Article  CAS  Google Scholar 

  19. M.H. Ghasemi, B. Ghasemi, and H.R.M. Semnani, Wear Performance of DLC Coating on Plasma Nitride Astaloy Mo, Diam. Relat. Mater., 2019, 1, p 8–15. https://doi.org/10.1016/j.diamond.2019.01.016

    Article  CAS  Google Scholar 

  20. E.L. Dalibón, M.A. Guitar, V. Trava-Airoldi, F. Mucklich, and S.P. Bruhl, Plasma Nitriding and DLC Coatings for Corrosion Protection of Precipitation Hardening Stainless Steel, Adv. Eng. Mater., 2015, 18(5), p 826–832. https://doi.org/10.1002/adem.201500411

    Article  CAS  Google Scholar 

  21. D. Cruz, B.A. Souza, L.A.P. Campos, L.S. Almeida, J.A. Moreto, M.D. Manfrinato, N.C. Cruz, and L.S. Rossino, Projeto, construção e comissionamento de um reator para tratamento de nitretação iônica a plasma em aço P20, Rev. Bras. Apl. Vac., 2018, 37, p 102–113. https://doi.org/10.17563/rbav.v37i3.1107

    Article  Google Scholar 

  22. L.S. Almeida, A.R.M. Souza, M.D. Manfrinato, and L.S. Rossino, Study of the Effect of Plasma Cleaning Treatment Parameters on Adhesion and Wear Resistance of Ti6Al4V DLC Films, Rev. Bras. Apl. Vac., 2020, 39(1), p 45–55. https://doi.org/10.17563/rbav.v39i1.1161

    Article  Google Scholar 

  23. C. Casiraghi, A.C. Ferrari, and J. Robertson, Raman Spectroscopy of Hydrogenated Amorphous Carbons, Phys. Rev. B, 2005, 728, p 1–14. https://doi.org/10.1103/physrevb.72.085401

    Article  Google Scholar 

  24. N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143–144, p 481–485. https://doi.org/10.1016/S0924-0136(03)00300-5

    Article  Google Scholar 

  25. G. Capote, D.C. Lugo, J.M. Gutiérrez, G.C. Mastrapa, and V.J. Trava-Airoldi, Effect of Amorphous Silicon Interlayer on the Adherence of Amorphous Hydrogenated Carbon Coatings Deposited on Several Metallic Surfaces, Surf. Coat. Technol., 2018, 344, p 644–655. https://doi.org/10.1016/j.surfcoat.2018.03.093

    Article  CAS  Google Scholar 

  26. K.L. Rutherford and I.M. Hutchings, A Micro-Abrasive Wear Test, with Particular Application to Coated Systems, Surf. Coat. Technol., 1996, 79, p 231–239. https://doi.org/10.1016/0257-8972(95)02461-1

    Article  CAS  Google Scholar 

  27. S. Li and R.R. Manory, Surface Morphology and Compound Layer Pores of Plasma Nitrocarburized Low Carbon Steel, Metall. Mater. Trans. A., 1996, 1, p 135–143. https://doi.org/10.1007/BF02647754

    Article  Google Scholar 

  28. B. Edenhofer, Physical and Metallurgical Aspects of Ionitriding—Part 1, Heat Treat. Met., 1974, 2, p 23–28

    Google Scholar 

  29. Y. Sun and T. Bell, Plasma Surface Engineering of Low Alloy Steel, Mater. Sci. Eng. A, 1991, 140, p 419–434. https://doi.org/10.1016/0921-5093(91)90458-y

    Article  Google Scholar 

  30. R.C.C. Rangel, N.C. Cruz, A. Milella, F. Fracassi, and E.C. Rangel, Barrier and Mechanical Properties of Carbon Steel Coated with SiOx/SiOxCyHz Gradual Films Prepared by PECVD, Surf. Coat. Technol., 2019, 1, p 124996. https://doi.org/10.1016/j.surfcoat.2019.124996

    Article  CAS  Google Scholar 

  31. A. Moreno-Bárcenas, J.M. Alvarado-Orozco, J.M.G. Carmona, G.C. Mondragón-Rodríguez, J. González-Hernández, and A. García-García, Synergistic Effect of Plasma Nitriding and Bias Voltage on the Adhesion of Diamond-Like Carbon Coatings on M2 Steel by PECVD, Surf. Coat. Technol., 2019, 374, p 327–337. https://doi.org/10.1016/j.surfcoat.2019.06.014

    Article  CAS  Google Scholar 

  32. R. D’Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato, and F. Arefi-Khonsari, Advanced Plasma Technology, 1st ed., Wiley, Mörlenbach, 2008

    Google Scholar 

  33. A. Grill and V. Patel, Characterization of Diamond-like Carbon by Infrared Spectroscopy, Appl. Phys. Lett., 1992, 8(2–5), p 2089–2091. https://doi.org/10.1063/1.107098

    Article  Google Scholar 

  34. K.Y. Li and S.M. Hsu, A Quantitative Wear Measurement Method on Production Engine Parts: Effect of DLC Thin Films on Wear, Wear, 2019, 426–427, p 462–470. https://doi.org/10.1016/j.wear.2019.01.054

    Article  CAS  Google Scholar 

  35. E.L. Dalibón, C. Lasorsa, A. Cabo, J. Cimetta, N. García, and S.P. Brühl, Tribological Properties of SiNx Films on PH Stainless Steel With and Without Nitriding as a Pre-treatment, Proc. Mater. Sci., 2012, 1, p 313–320. https://doi.org/10.1016/j.mspro.2012.06.042

    Article  CAS  Google Scholar 

  36. E. Araújo Junior, R.M. Bandeira, M.D. Manfrinato, J.A. Moreto, R. Borges, S.S. Vales, P.A. Suzuki, and L.S. Rossino, Effect of Ionic Plasma Nitriding Process on the Corrosion and Micro-Abrasive Wear Behavior of AISI, 316L Austenitic and AISI, 470 Super-Ferritic Stainless Steels, J. Mater. Res. Technol., 2019, 1, p 2180–2191. https://doi.org/10.1016/j.jmrt.2019.02.006

    Article  CAS  Google Scholar 

  37. H. Okubo, C. Tadokoro, T. Sumi, N. Tanaka, and S. Sasaki, Wear Acceleration Mechanism of Diamond-like Carbon (DLC) Films Lubricated with MoDTC Solution: Roles of Tribofilm Formation and Structural Transformation in Wear Acceleration of DLC Films Lubricated with MoDTC Solution, Tribol. Int., 2019, 133, p 271–287. https://doi.org/10.1016/j.triboint.2018.12.029

    Article  CAS  Google Scholar 

  38. N. Yamauchi, A. Okamoto, H. Tukahara, K. Demizu, N. Ueda, T. Sone, and Y. Hirose, Friction and Wear of DLC Films on 304 Austenitic Stainless Steel in Corrosive Solutions, Surf. Coat. Technol., 2003, 174–175, p 465–469. https://doi.org/10.1016/S0257-8972(03)00406-7

    Article  CAS  Google Scholar 

  39. C. Binder, Desenvolvimento de novos tipos de aços sinterizados auto lubrificantes a seco com elevada resistência mecânica Aliada a baixo coeficiente de atrito via moldagem de pós por Injeção. 2009. Doctoral Thesis - Federal University of Santa Catarina, Technological Center, Graduate Program in Science and Materials Engineering, Florianópolis, 2009. https://repositorio.ufsc.br/handle/123456789/92350. Accessed 13 Aug 2019

  40. R.C. Cozza, Study of the steady state of wear in micro-abrasive wear testes by rotative ball conducted on specimen of WC–Co P20 and M2 tool-steel, Matéria, 2018, https://doi.org/10.1590/S1517-707620170001.0322

    Article  Google Scholar 

  41. H.S.M. Lopez, J.A. Moreto, M.D. Manfrinato, N.C. da Cruz, E.C. Rangel, and L.S. Rossino, Micro Abrasive Wear Behaviour Study of Carburization and Ion Plasma Nitriding of P20 Steel, Mat. Res., 2016, 19(3), p 686–694. https://doi.org/10.1590/1980-5373-MR-2015-0721

    Article  Google Scholar 

  42. D.C. Wen, Microstructure and Corrosion Resistance of the Layers Formed on the Surface of Precipitation Hardenable Plastic Mold Steel by Plasma-Nitriding, Appl. Surf. Sci., 2009, 256(3), p 797–804. https://doi.org/10.1016/j.apsusc.2009.08.062

    Article  CAS  Google Scholar 

  43. M.B. Karamiş, Wear Properties of Steel Plasma Nitrited at High Temperatures, Mater. Sci. Eng. A., 1993, 168(1), p 49–53. https://doi.org/10.1016/0921-5093(93)90269-k

    Article  Google Scholar 

  44. G.A. Ranalli, A.S.N. Pallone, V.F. Pereira, R.G. Oliveira, and N.A. Mariano, Efeitos da nitretação por plasma com pós-oxidação e por banho de sal na resistência à corrosão de um aço ferramenta, RevistaMatéria, 2009, 14(2), p 814–823. https://doi.org/10.1590/S1517-70762009000200005

    Article  CAS  Google Scholar 

  45. Z. Wang, C. Wang, Q. Wang, and J. Zhang, Electrochemical Corrosion Behaviors of a-C: H and a-C:NX: H Films, Appl. Surf. Sci., 2008, 254, p 3021–3025. https://doi.org/10.1016/j.apsusc.2007.10.088

    Article  CAS  Google Scholar 

  46. A. Zeng, E. Liu, I.F. Annergren, S.N. Tan, S. Zhang, P. Hing, and J. Gao, EIS Capacitance Diagnosis of Nanoporosity Effect on the Corrosion Protection of DLC Films, Diam. Relat. Mater., 2002, 11, p 160–168. https://doi.org/10.1016/S0925-9635(01)00568-4

    Article  CAS  Google Scholar 

  47. T. Maerten, R. Oltra, C. Jaoul, C. Le Niniven, P. Tristant, F. Meunier, and O. Jarry, Investigation of Diamond-like Carbon Coated Steel Corrosion: Enhancing the Optical Detection of Defects by a Controlled Electrochemical Activation, Surf. Coat. Technol., 2019, 363, p 344–351. https://doi.org/10.1016/j.surfcoat.2019.02.050

    Article  CAS  Google Scholar 

  48. F.A. Delfín, S.P. Brühl, C. Forsich, and D. Heim, Carbon Based DLC Films: Influence of the Processing Parameters on the Structure and Properties, Revista Mater., 2018, 23, p 02. https://doi.org/10.1590/s1517-707620180002.0395

    Article  CAS  Google Scholar 

  49. E.R. Petry, C.D. Boeira, F. Cemin, L.M. Leidens, L.T. Bim, D.G. Larrude, M.E.H. Maia da Costa, and C.A. Figueroa, Physicochemical Structure of SiCx: H to Improve DLC Adhesion on Steel, Surf. Eng., 2016, 32(10), p 779–785. https://doi.org/10.1080/02670844.2016.1159277

    Article  CAS  Google Scholar 

  50. X.L. Peng and T.W. Clyne, Mechanical Stability of DLC Films on Metallic Substrates Part lI, - Interfacial Toughness, Debonding and Blistering, Thin Solid Films, 1998, 312, p 210–227. https://doi.org/10.1016/S0040-6090(97)00703-7

    Article  Google Scholar 

  51. R. Braak, U. May, L. Onuseit, G. Repphun, M. Guenther, C. Schmid, and K. Durst, Accelerated Thermal Degradation of DLC-Coatings Via Growth Defects, Surf. Coat. Technol., 2018, 349, p 272–278. https://doi.org/10.1016/j.surfcoat.2018.05.063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Polytechnic School of the University of São Paulo – USP, LaPTec/UNESP Campus Sorocaba, Laboratory of Carbon Sci-Tech Labs/UNICAMP, UFSCar Campus Sorocaba, São Paulo Research Foundation FAPESP (2019/13041-3), Capes (code 001) and CNPq scholarship - Brazil (140187-2017-0) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Sgarbi Rossino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, L.d.A.P., de Almeida, L.S., da Silva, B.P. et al. Evaluation of Nitriding, Nitrocarburizing, Organosilicon Interlayer, Diamond-Like Carbon Film and Duplex Plasma Treatment in the Wear and Corrosion Resistance of AISI 4340 Steel. J. of Materi Eng and Perform 29, 8107–8121 (2020). https://doi.org/10.1007/s11665-020-05277-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05277-9

Keywords

Navigation