Skip to main content
Log in

Gravity field of a tesseroid by variable-order Gauss–Legendre quadrature

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Gauss–Legendre quadrature (GLQ) integration is a numerical method to calculate the gravitational field of a tesseroid and the approximation error of the GLQ integration increases as the tesseroid gets closer to the computation point. There are two ways to counterbalance this effect. One way is the subdivision of a tesseroid into smaller units and the other way is to increase the quadrature order. In this paper, we develop variable-order GLQ to model the gravitational field of a tesseroid based on the relation between the quadrature order and the node spacing. This algorithm uses a scalar, referred to distance-to-spacing ratio (\( R_{\text{LS}} \)), to control the order of the GLQ integration and the calculation accuracy without the subdivision strategy. We perform the approximation error analysis for the gravitational potential, attraction, and Marussi tensor components to examine the applicability of the variable-order GLQ. Numerical experiments show that the variable-order GLQ is suitable for the case that the horizontal dimensions of the tesseroids are larger than \( 0.5^\circ \) and the computation height is over 50 km. We obtain the optimal values for the ratio \( R_{\text{LS}} \) based on the relation between the approximation errors and the ratio \( R_{\text{LS}} \) for the tesseroid with the horizontal dimensions \( 0.5^\circ \) to \( 5^\circ \). Numerical results show that if the maximum tolerate approximation error is \( 10^{ - 3} \% \), the values of the ratio \( R_{\text{LS}} = 2.5, 5.5 \) and 10.5 are required for the gravitational potential \( V \), the vertical gravitational attraction \( V_{z} \), and the vertical gravitational gradient \( M_{zz} \), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez O, Gimenez M, Braitenberg C, Folguera A (2012) GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophys J Int 190(2):941–959

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. Psychologist 16(3):20–25

    Google Scholar 

  • Asgharzadeh MF, Von Frese RRB, Kim HR, Leftwich TE, Kim JW (2007) Spherical prism gravity effects by Gauss–Legendre quadrature integration. Geophys J Int 169(1):1–11

    Article  Google Scholar 

  • Baykiev E, Ebbing J, Brönner M, Fabian K (2016) Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids. Comput Geosci 96:124–135

    Article  Google Scholar 

  • Commer M (2011) Three-dimensional gravity modelling and focusing inversion using rectangular meshes. Geophys Prospect 59(5):966–979

    Google Scholar 

  • Conway, John T (2015) Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astron 121(1):17–38

    Article  Google Scholar 

  • Deng XL, Shen WB (2018) Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels. J Geodesy 92:415–429

    Article  Google Scholar 

  • Deng XL, Shen WB (2019) Topographic effects up to gravitational curvatures of tesseroids: a case study in China. Stud Geophys Geod 63(3):345–366

    Article  Google Scholar 

  • Deng XL, Grombein T, Shen WB, Heck B, Seitz K (2016) Corrections to “a comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling” (heck and seitz, 2007) and “optimized formulas for the gravitational field of a tesseroid” (grombein et al. 2013). J Geodesy 90(6):585–587

    Article  Google Scholar 

  • Frese RRBV, Hinze WJ, Braile LW, Luca AJ (1981) Spherical-earth gravity and magnetic anomaly modeling by Gauss–Legendre quadrature integration. J Geophys Z Geophys 49(3):234–242

    Google Scholar 

  • Fukushima T (2018) Accurate computation of gravitational field of a tesseroid. J Geodesy 92:1371–1386

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87(7):645–660

    Article  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modeling. J Geodesy 81(2):121–136

    Article  Google Scholar 

  • Ku CC (1977) A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent-point method and a simplified cubic spline. Geophysics 42(3):610–622

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of Earth’s crust. Geophys Res (EGU general assembly conference, abstract, 15)

  • Li X, Chouteau M (1998) Three-dimensional gravity modeling in all space. Surv Geophys 19(4):339–368

    Article  Google Scholar 

  • Li Z, Hao T, Xu Y, Xu Y (2011) An efficient and adaptive approach for modeling gravity effects in spherical coordinates. J Appl Geophys 73(3):221–231

    Article  Google Scholar 

  • Lin M, Denker H (2019) On the computation of gravitational effects for tesseroids with constant and linearly varying density. J Geodesy 93(5):723–747

    Article  Google Scholar 

  • Makhloof AA, Ilk KH (2008) Effects of topographic–isostatic masses on gravitational functionals at the earth's surface and at airborne and satellite altitudes. J Geodesy 82(2):93–111

    Article  Google Scholar 

  • Marotta AM, Barzaghi R (2017) A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J Geodesy 91(10):1207–1224

    Article  Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) Crust 5.1: a global crustal model at 5° × 5°. J Geophys Res Solid Earth 103(B1):727–747

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31(2):362–371

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74(7–8):552–560

    Article  Google Scholar 

  • Novák P, Grafarend EW (2005) Ellipsoidal representation of the topographical potential and its vertical gradient. J Geodesy 78(11–12):691–706

    Article  Google Scholar 

  • Ren Z, Tang J, Kalscheuer T, Maurer H (2017) Fast 3-d large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method. J Geophys Res Solid Earth 122(1):79–109

    Article  Google Scholar 

  • Roussel C, Verdun J, Cali J, Masson F (2015) Complete gravity field of an ellipsoidal prism by Gauss–Legendre quadrature. Geophys J Int 203(3):2220–2236

    Article  Google Scholar 

  • Shen WB, Deng XL (2016) Evaluation of the fourth-order tesseroid formula and new combination approach to precisely determine gravitational potential. Stud Geophys Geod 60(4):583–607

    Article  Google Scholar 

  • Soler SR, Pesce A, Gimenez ME, Uieda L (2019) Gravitational field calculation in spherical coordinates using variable densities in depth. Geophys J Int 218(3):2150–2164

    Article  Google Scholar 

  • Uieda L, Bomfim EP, Braitenberg C, Molina E (2011) Optimal forward calculation method of the Marussi tensor due to a geologic structure at GOCE height. In: Proceedings of 4th international GOCE user workshop

  • Uieda L, Barbosa Valéria C F, Braitenberg C (2016) Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics 81(5):F41–F48

    Article  Google Scholar 

  • Urso MG (2014) Analytical computation of gravity effects for polyhedral bodies. J Geodesy 88(1):13–29

    Article  Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geodesy 82(10):637–653

    Article  Google Scholar 

  • Zhao G, Chen B, Uieda L, Liu J, Kaban MK, Chen L, Guo R (2019) Efficient 3-D large-scale forward modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons. J Geophys Res Solid Earth 124:4157–4173

    Article  Google Scholar 

  • Zhong Y, Ren Z, Chen C, Chen H, Yang Z, Guo Z (2019) A new method for gravity modeling using tesseroids and 2d Gauss–Legendre quadrature rule. J Appl Geophys 164:53–64

    Article  Google Scholar 

Download references

Acknowledgements

This work appreciates the support of China Scholarship Council and Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxi Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Appendix A: Analytical gravitational potential and its radial derivatives of a homogenous shell

Appendix A: Analytical gravitational potential and its radial derivatives of a homogenous shell

The analytical gravitational potential \( V^{\text{shell}} \), the radial component \( V_{z}^{\text{shell}} \) of the gravitational attraction and the component \( M_{zz}^{\text{shell}} \) of Marussi tensor of a homogenous spherical shell at an arbitrary point with a radial distance \( r \) above the shell can be computed by (Heck and Seitz 2007; Grombein et al. 2013)

$$ V^{\text{shell}} \left( r \right) = \frac{4\pi G\rho }{3r}\left( {R_{2}^{3} - R_{1}^{3} } \right), r \ge R_{2} $$
(A1)
$$ V_{z}^{\text{shell}} \left( r \right) = \frac{{V^{\text{shell}} }}{r}, r \ge R_{2} $$
(A2)

and

$$ M_{zz}^{\text{shell}} \left( r \right) = \frac{{2V^{\text{shell}} }}{{r^{2} }}, r \ge R_{2} $$
(A3)

here \( R_{1} \) and \( R_{2} \) are inner and outer radii of the shell, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Chen, Z. Gravity field of a tesseroid by variable-order Gauss–Legendre quadrature. J Geod 94, 114 (2020). https://doi.org/10.1007/s00190-020-01440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01440-1

Keywords

Navigation