Skip to main content
Log in

In-situ Observations of Directed Energy Deposition Additive Manufacturing Using High-Speed X-ray Imaging

  • In Situ Synchrotron and Neutron Characterization of Additively Manufactured Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In laser-based directed energy deposition (DED) additive manufacturing, interactions among the laser beam, particle flow, and melt pool influence the properties of the solidified final part. Two separate DED systems, one with high powder flow rates to represent industrial-scale DED processing and the other with low powder flow rates for individual particle tracking, were synchronized with the high-speed imaging setup at the Advanced Photon Source in Argonne National Laboratory. In-situ x-ray imaging of the DED process using both systems highlighted the influence of powder flow rates. Increased powder flow rates resulted in less laser absorption into the melt pool, leading to a transition from a keyhole mode to a melt pool without a keyhole but with surface fluctuations due to powder flow. Increased velocities of particles during powder flow resulted in a decrease in particle melting times and a greater propensity for porosity formation. Overall, better understanding of the interactions that occur during various scales of the DED process will enable flexibility, control, and new materials development in DED-based additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.F. Hamilton, B.A. Bimber, and T.A. Palmer, J. Alloy. Compd. 739, 712 (2018).

    Article  Google Scholar 

  2. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, vol. 17 (Springer, Berlin, 2014).

    Google Scholar 

  3. S. Wolff, T. Lee, E. Faierson, K. Ehmann, and J. Cao, J. Manuf. Process. 24, 397 (2016).

    Article  Google Scholar 

  4. J.P. Kruth, B. Vandenbroucke, J. Vaerenbergh, and I. Naert, Les 11ie‘mes Assises Europe ennes du Prototypage Rapide, Paris (2005).

  5. S. Webster, S. Wolff, J. Bennett, T. Sun, J. Cao, and K. Ehmann, Microsc. Microanal. 25(S2), 2556 (2019).

    Article  Google Scholar 

  6. L. Tang, J. Ruan, R.G. Landers, and F. Liou, J. Manuf. Sci. Eng. 130(4) (2008).

    Google Scholar 

  7. F. Lia, J.Z. Park, J.S. Keist, S. Joshi, and R.P. Martukanitz, Mater. Sci. Eng. A 717, 1 (2018).

    Article  Google Scholar 

  8. J.L. Bennett, S.J. Wolff, G. Hyatt, K. Ehmann, and J. Cao, J. Manuf. Process. 28, 550 (2017).

    Article  Google Scholar 

  9. J. Heigel, P. Michaleris, and E.W. Reutzel, Addit. Manuf. 5, 9 (2015).

    Google Scholar 

  10. N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, and A.M. Beese, J. Mater. Process. Technol. 264, 172 (2019).

    Article  Google Scholar 

  11. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).

    Article  Google Scholar 

  12. S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, and J. Cao, Acta Mater. 132, 106 (2017).

    Article  Google Scholar 

  13. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, and T. Sun, Sci. Rep. 7(1), 3602 (2017).

    Article  Google Scholar 

  14. N.D. Parab, C. Zhao, R. Cunningham, L.I. Escano, B. Gould, S. Wolff, Q. Guo, L. Xiong, C. Kantzos, J. Pauza, and K. Fezzaa, Synchrotron Radiat. News 32(2), 4 (2019).

    Article  Google Scholar 

  15. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Science 363(6429), 849 (2019).

    Article  Google Scholar 

  16. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Addit. Manuf. 28, 600 (2019).

    Google Scholar 

  17. A. Bobel, L.G. Hector Jr, I. Chelladurai, A.K. Sachdev, T. Brown, W.A. Poling, R. Kubic, B. Gould, C. Zhao, N. Parab, and A. Greco, Materialia 6, 100306 (2019).

    Article  Google Scholar 

  18. L. Aucott, H. Dong, W. Mirihanage, R. Atwood, A. Kidess, S. Gao, S. Wen, J. Marsden, S. Feng, M. Tong, T. Connolley, M. Drakopoulos, C.R. Kleijn, I.M. Richardson, D.J. Browne, R.H. Mathiesen, and H.V. Atkinson, Nat. Commun. 9(1), 1 (2018).

    Article  Google Scholar 

  19. C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun, Phys. Rev. X 9(2), 021052 (2019).

    Google Scholar 

  20. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, Nat. Commun. 9(1), 1355 (2018).

    Article  Google Scholar 

  21. N.P. Calta, J. Wang, A.M. Kiss, A.A. Martin, P.J. Depond, G.M. Guss, V. Thampy, A.Y. Fong, J.N. Weker, K.H. Stone, C.J. Tassone, M.J. Kramer, M.F. Toney, A. van Buuren, and M.J. Matthews, Rev. Sci. Instrum. 89(5), 055101 (2018).

    Article  Google Scholar 

  22. V. Thampy, A.Y. Fong, N.P. Calta, J. Wang, A.A. Martin, P.J. Depond, A.M. Kiss, G. Guss, Q. Xing, R.T. Ott, A. van Buuren, M.F. Toney, J.N. Weker, M.J. Kramer, M.J. Matthews, C.J. Tassone, and K.H. Stone, Sci. Rep. 10(1), 1 (2020).

    Article  Google Scholar 

  23. S.M.H. Hojjatzadeh, N.D. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, M. Qu, L.I. Escano, X. Xiao, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Nat. Commun. 10(1), 1 (2019).

    Article  Google Scholar 

  24. N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan, Phys. Rev. Appl. 11(6), 064054 (2019).

    Article  Google Scholar 

  25. A.A. Martin, N.P. Calta, J.A. Hammons, S.A. Khairallah, M.H. Nielsen, R.M. Shuttlesworth, N. Sinclair, M.J. Matthews, J.R. Jeffries, T.M. Willey, and J.R. Lee, Mater. Today Adv. 1, 100002 (2019).

    Article  Google Scholar 

  26. N.H. Paulson, B. Gould, S.J. Wolff, M. Stan, and A. Greco, Addit. Manuf. 34, 101213 (2020).

  27. S.J. Wolff, H. Wu, N. Parab, C. Zhao, K.F. Ehmann, T. Sun, and J. Cao, Sci. Rep. 9(1), 962 (2019).

    Article  Google Scholar 

  28. Y. Chen, S. Clark, A. Leung, L. Sinclair, S. Marussi, R. Atwood, T. Connoley, M. Jones, G. Baxter, and P. Lee, in IOP Conference Series: Materials Science and Engineering, vol. 861 (IOP Publishing, 2020), vol. 861, p. 012012

  29. N. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, A. Rollett, L. Chen, and T. Sun, Microsc. Microanal. 25(S2), 2566 (2019).

    Article  Google Scholar 

  30. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods 9(7), 676 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following: Yi Shi, Nicolas Martinez, Suman Bhandari, and Jennifer Bennett for experiment execution and Kamel Fezzaa and Alex Deriy at the beamline. The authors also acknowledge Profs. Kornel Ehmann and Jian Cao from Northwestern University for acquiring funding and their guidance on the work. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (ANL) under contract no. DE-AC02-06CH11357 in addition to support through Laboratory Directed Research and Development (LDRD) funding from ANL under the same contract. This research was also funded by the Northwestern Initiative for Manufacturing Science and Innovation (NIMSI) and the US Department of Commence National Institute of Standards and Technology’s Center for Hierarchical Materials Design (CHiMaD) under grant no. 70NANB14H012. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1842165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Wolff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 70238 KB)

Supplementary material 2 (avi 68293 KB)

Supplementary material 3 (avi 224979 KB)

Supplementary material 4 (avi 133260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, S.J., Webster, S., Parab, N.D. et al. In-situ Observations of Directed Energy Deposition Additive Manufacturing Using High-Speed X-ray Imaging. JOM 73, 189–200 (2021). https://doi.org/10.1007/s11837-020-04469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04469-x

Navigation