Skip to main content
Log in

Manufacture of an aerospace component with hybrid incremental forming methodology

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Single point incremental forming is a promising sheet metal forming technique for small batch production. However, the technique is unable to manufacture vertical walls without significant thickness variation and geometrical errors. Two-point incremental forming has the capability of manufacturing vertical walls but requires actuators and intricate rig designs. This paper presents a design facilitating vertical wall manufacturing using a die similar to that used for two-point incremental forming but without actuators. The geometry is created in six passes with a toolpath that can be generated on any leading computer-aided manufacturing software. Manufacturing with this technique reduces geometrical errors in critical areas and improves thickness distribution. This research will be of interest to anyone looking to manufacture prototypes with flat-based geometries in a cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adams D (2013) Improvements on single point incremental forming through electrically assisted forming, contact area prediction and tool development. Ph.D. Thesis, Queen’s University

  2. Adams D, Jeswiet J (2014) Design rules and applications of single-point incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229 (5):754–760. https://doi.org/10.1177/0954405414531426https://doi.org/10.1177/0954405414531426, http://pib.sagepub.com/content/229/5/754.abstract

    Article  Google Scholar 

  3. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Annals - Manuf Technol 57(1):257–260. https://doi.org/10.1016/j.cirp.2008.03.066, http://www.sciencedirect.com/science/article/pii/S0007850608001054

    Article  Google Scholar 

  4. Asghari SAA, Shamsi Sarband A, Habibnia M (2017) Optimization of multiple quality characteristics in two-point incremental forming of aluminum 1050 by grey relational analysis. In: Proceedings of the institution of mechanical engineers, Part c: Journal of Mechanical Engineering Science, pp 095440621769365. https://doi.org/10.1177/0954406217693658

  5. Attanasio A, Ceretti E, Fiorentino A, Mazzoni L, Giardini C (2009) Experimental tests to study feasibility and formability in incremental forming process. Key Eng Mater 410-411:391–400. https://doi.org/10.4028/www.scientific.net/KEM.410-411.391

    Article  Google Scholar 

  6. Attanasio A, Ceretti E, Giardini C (2006) Optimization of tool path in two points incremental forming. J Mater Process Technol 177 (1-3):409–412. https://doi.org/10.1016/j.jmatprotec.2006.04.047, http://www.sciencedirect.com/science/article/pii/S0924013606004225

    Article  Google Scholar 

  7. Attanasio A, Ceretti E, Giardini C, Mazzoni L (2008) Asymmetric two points incremental forming: Improving surface quality and geometric accuracy by tool path optimization. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2007.05.053

  8. Bagudanch I, Sabater M, Garcia-Romeu ML (2017) Single point versus two point incremental forming of thermoplastic materials. Adv Mater Process Technol 3(1):135–144. https://doi.org/10.1080/2374068X.2016.1250245

    Article  Google Scholar 

  9. Bambach M (2004) Modeling of optimization strategies in the incremental CNC sheet metal forming process. In: AIP Conference proceedings. https://doi.org/10.1063/1.1766822, vol 712. AIP, pp 1969–1974

  10. Buffa G, Campanella D, Fratini L (2013) On the improvement of material formability in SPIF operation through tool stirring action. Int J Adv Manuf Technol 66(9-12):1343–1351. https://doi.org/10.1007/s00170-012-4412-9

    Article  Google Scholar 

  11. Centeno G, Bagudanch I, Morales-Palma D, García-Romeu M, Gonzalez-Perez-Somarriba B, Martinez-Donaire A, Gonzalez-Perez L, Vallellano C (2017) Recent approaches for the manufacturing of polymeric cranial prostheses by incremental sheet forming. Procedia Eng 183:180–187. https://doi.org/10.1016/J.PROENG.2017.04.059, https://www.sciencedirect.com/science/article/pii/S1877705817315643

    Article  Google Scholar 

  12. Ceretti E, Giardini C, Attanasio A (2004) Experimental and simulative results in sheet incremental forming on CNC machines. J Mater Process Technol 152(2):176–184. https://doi.org/10.1016/j.jmatprotec.2004.03.024, http://linkinghub.elsevier.com/retrieve/pii/S0924013604004534

    Article  Google Scholar 

  13. Choi H, Lee C (2019) A mathematical model to predict thickness distribution and formability of incremental forming combined with stretch forming. Robotics and Computer-Integrated Manufacturing 55:164–172. https://doi.org/10.1016/J.RCIM.2018.07.014

    Article  Google Scholar 

  14. Duflou J, Lauwers B, Verbert J (2007) Study on the achievable accuracy in single point incremental forming. In: Advanced methods in material forming. https://doi.org/10.1007/3-540-69845-0_15. Springer, Berlin, pp 251–262

  15. Duflou J, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken A (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Annals - Manuf Technol 57(1):253–256. https://doi.org/10.1016/j.cirp.2008.03.030, http://www.sciencedirect.com/science/article/pii/S0007850608000310

    Article  Google Scholar 

  16. Ebrahimzadeh P, Baseri H, Mirnia MJ (2018) Formability of aluminum 5083 friction stir welded blank in two-point incremental forming process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 232(3):267–280. https://doi.org/10.1177/0954408917692370

    Article  Google Scholar 

  17. Emmens WC, Sebastiani G, Van den Boogaard AH (2010) The technology of Incremental Sheet Forming-A brief review of the history. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2010.02.014

  18. Formisano A, Boccarusso L, Capece Minutolo F, Carrino L, Durante M, Langella A (2017) Negative and positive incremental forming: Comparison by geometrical, experimental, and FEM considerations. Mater Manuf Process 32(5):530–536. https://doi.org/10.1080/10426914.2016.1232810

    Article  Google Scholar 

  19. Gupta P, Jeswiet J (2017) Effect of temperatures during forming in single point incremental forming. The International Journal of Advanced Manufacturing Technology, pp 1–14. https://doi.org/10.1007/s00170-017-1400-0

  20. Gupta P, Jeswiet J (2017) Observations on heat generated in single point incremental forming. In: Procedia Engineering. https://doi.org/10.1016/j.proeng.2017.04.060, http://www.sciencedirect.com/science/article/pii/S1877705817315655, vol 183. Elsevier, pp 161–167

  21. Gupta P, Jeswiet J (2019) Manufacture of an aerospace component by single point incremental forming. Procedia Manuf 29:112–119. https://doi.org/10.1016/j.promfg.2019.02.113, https://www.sciencedirect.com/science/article/pii/S2351978919301465, https://linkinghub.elsevier.com/retrieve/pii/S2351978919301465

    Article  Google Scholar 

  22. Gupta P, Szekeres A, Jeswiet J (2019) Design and development of an aerospace component with single-point incremental forming. The International Journal of Advanced Manufacturing Technology, pp 1–20. https://doi.org/10.1007/s00170-019-03622-4

  23. Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. In: Procedia Engineering. https://doi.org/10.1016/j.proeng.2014.10.329, http://www.sciencedirect.com/science/article/pii/S1877705814016087, vol 81. Elsevier, pp 2330–2335

  24. Hirt G, Ames J, Bambach M (2005) A new forming strategy to realise parts designed for deep-drawing by incremental CNC sheet forming. Steel Research International. https://doi.org/10.1002/srin.200505989

  25. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and Process Modelling for CNC Incremental Sheet Forming. CIRP Ann Manuf Technol 53(1):203–206. https://doi.org/10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  26. Hirt G, Bambach M, Bleck W, Prahl U, Stollenwerk J (2015) The development of incremental sheet forming from flexible forming to fully integrated production of sheet metal parts. In: Brecher C. (ed) Advances in production technology. Springer International Publishing, Cham, pp 117–129

  27. Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209(3):1158–1174. https://doi.org/10.1016/j.jmatprotec.2008.03.025, http://linkinghub.elsevier.com/retrieve/pii/S0924013608002422

    Article  Google Scholar 

  28. Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3(4):253–262. https://doi.org/10.1007/s40436-015-0126-1

    Article  Google Scholar 

  29. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114

    Article  Google Scholar 

  30. Lasunon O, Knight WA (2007) Comparative investigation of single-point and double-point incremental sheet metal forming processes. In: Proceedings of the institution of mechanical engineers part b: journal of engineering manufacture. https://doi.org/10.1243/09544054JEM865

  31. Li JC, Yang FF, Zhou ZQ (2015) Thickness distribution of multi-stage incremental forming with different forming stages and angle intervals. J Cent South Univ 22(3):842–848. https://doi.org/10.1007/s11771-015-2591-x

    Article  Google Scholar 

  32. Li X, Han K, Li D (2018) Multi-Stage Two point incremental sheet forming. Journal of Physics: Conference Series 1063(1):012064. https://doi.org/10.1088/1742-6596/1063/1/012064, http://stacks.iop.org/1742-6596/1063/i=1/a=012064?key=crossref.3ecce46ed8f382ef46bb688afea3c4e0

    Google Scholar 

  33. Li X, Han K, Yu H, Zhang Y, Li D (2016) Effect of some process parameters on geometric errors in twopoint incremental forming for Al-Cu-Mg Aluminum Alloy. In: Journal of physics: Conference series. https://doi.org/10.1088/1742-6596/734/3/032078

  34. Liu Z, Meehan P, Bellette P (2011) Thickness distribution and forming strategy analysis for two point Incremental Forming with a male die. Adv Mater Res 337:452–455. https://doi.org/10.4028/www.scientific.net/AMR.337.452

    Article  Google Scholar 

  35. Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213(7):1221–1233. https://doi.org/10.1016/j.jmatprotec.2013.01.023, http://www.sciencedirect.com/science/article/pii/S092401361300040X

    Article  Google Scholar 

  36. Malhotra R, Bhattacharya A, Kumar A, Reddy N, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Annals - Manuf Technol 60(1):323–326. https://doi.org/10.1016/j.cirp.2011.03.145, http://www.sciencedirect.com/science/article/pii/S0007850611001466

    Article  Google Scholar 

  37. Malhotra R, Cao J, Ren F, Kiridena V, Cedric Xia Z, Reddy NV (2011) Improvement of geometric accuracy in incremental forming by using a squeezing Toolpath strategy with two forming tools. J Manuf Sci Eng 133(6):061019. https://doi.org/10.1115/1.4005179. http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1460624

    Article  Google Scholar 

  38. Malhotra R, Reddy N, Agrawal A (2007) Automatic path generation for incremental sheet metal forming. In: Verma R, Bhattacharjee D (eds) Proc Symp Automotive Steel. https://books.google.ca/books?id=LvF2pixQN3wC&dq=incremental+sheet+forming&source=gbs_navlinks_s. Tata McGraw-Hill Education, Jamshedpur, pp 97–101

  39. Malhotra R, Reddy NV, Cao J (2010) Automatic 3D spiral Toolpath generation for single point incremental forming. J Manuf Sci Eng 132(6):061003. https://doi.org/10.1115/1.4002544, http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1452475

    Article  Google Scholar 

  40. Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical tool. Journal of the JSTP

  41. Matsubara S (1995) Method and device for forming metal plate. https://patents.google.com/patent/JPH07132329A/en

  42. Matsubara S (2001) A computer numerically controlled dieless incremental forming of a sheet metal. In: Proceedings of the institution of mechanical engineers, Part B: Journal of Engineering Manufacture. https://doi.org/10.1243/0954405011518863, vol 215. Professional Engineering Publishing, pp 959–966

  43. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and future trends. J Mater Process Technol 191(1-3):390–395. https://doi.org/10.1016/j.jmatprotec.2007.03.066, http://www.sciencedirect.com/science/article/pii/S0924013607002919

    Article  Google Scholar 

  44. Mostafanezhad H, Menghari HG, Esmaeili S, Shirkharkolaee EM (2018) Optimization of two-point incremental forming process of AA1050 through response surface methodology. Measurement 127:21–28. https://doi.org/10.1016/J.MEASUREMENT.2018.04.042, https://www.sciencedirect.com/science/article/pii/S026322411830318X#b0065

    Article  Google Scholar 

  45. Otsu M, Yasunaga M, Matsuda M, Takashima K (2014) Friction stir incremental forming of A2017 aluminum sheets. Procedia Engineering 81:2318–2323. https://doi.org/10.1016/j.proeng.2014.10.327, http://www.sciencedirect.com/science/article/pii/S1877705814016063

    Article  Google Scholar 

  46. Park J, Kim Y (2003) Fundamental studies on the incremental sheet metal forming technique. J Mater Process Technol 140(1-3):447–453. https://doi.org/10.1016/S0924-0136(03)00768-4

    Article  Google Scholar 

  47. Puzik A (2008) Incremental sheet forming with a robot system for an industrial application. In: Manufacturing systems and technologies for the new frontier. https://doi.org/10.1007/978-1-84800-267-8_86. Springer, London, pp 421–424

  48. Shin J, Bansal A, Nath M, Cheng R, Banu M, Taub A, Martinek B (2018) Prediction of negative bulge in two point incremental forming of an asymmetric shape part. Journal of Physics: Conference Series 1063(1):012057. https://doi.org/10.1088/1742-6596/1063/1/012057, http://stacks.iop.org/1742-6596/1063/i=1/a=012057?key=crossref.d9ff4fc5dbbcf53a005118e697dd1d87

    Google Scholar 

  49. Silva MB, Martins PAF (2013) Two-Point Incremental forming with partial die: theory and experimentation. J Mater Eng Perform 22(4):1018–1027. https://doi.org/10.1007/s11665-012-0400-3

    Article  Google Scholar 

  50. Skjoedt M, Bay N, Endelt B, Ingarao G (2008) Multi stage strategies for single point incremental forming of a cup. Int J Mater Form 1(S1):1199–1202. https://doi.org/10.1007/s12289-008-0156-3

    Article  Google Scholar 

  51. Skjoedt M, Silva MB, Martins PAF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal Eng Design 45(1):33–44. https://doi.org/10.1243/03093247JSA574

    Article  Google Scholar 

  52. Verbert J, Belkassem B, Henrard C, Habraken AM, Gu J, Sol H, Lauwers B, Duflou JR (2008) Multi-Step toolpath approach to overcome forming limitations in single point incremental forming. Int J Mater Form 1(S1):1203–1206. https://doi.org/10.1007/s12289-008-0157-2

    Article  Google Scholar 

  53. Verbert J, Duflou JR, Lauwers B (2009) Feature based approach for increasing the accuracy of the SPIF process key engineering materials. https://doi.org/10.4028/www.scientific.net/kem.344.527

  54. Ziran X, Gao L, Hussain G, Cui Z (2009) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46 (9-12):1113–1118. https://doi.org/10.1007/s00170-009-2179-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC) for providing financial support. The authors would like to thank the technical staff members of the Machine Shop, Department of Mechanical and Materials Engineering, Queen’s University and Prof. Chris K. Mechefske for collaborating on the project. Authors would also like to thank Dr. Jessica Hiscocks for her additional help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Gupta.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank the Natural Sciences and Engineering Research Council for the financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Szekeres, A. & Jeswiet, J. Manufacture of an aerospace component with hybrid incremental forming methodology. Int J Mater Form 14, 293–308 (2021). https://doi.org/10.1007/s12289-020-01601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-020-01601-9

Keywords

Navigation