Skip to main content
Log in

Pseudoconvexity for the special Lagrangian potential equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The Special Lagrangian Potential Equation for a function u on a domain \(\Omega \subset {{\mathbb {R}}}^n\) is given by \({\mathrm{tr}}\{\arctan (D^2 \,u) \} = \theta \) for a contant \(\theta \in (-n {\pi \over 2}, n {\pi \over 2})\). For \(C^2\) solutions the graph of Du in \(\Omega \times {{\mathbb {R}}}^n\) is a special Lagrangian submanfold. Much has been understood about the Dirichlet problem for this equation, but the existence result relies on explicitly computing the associated boundary conditions (or, otherwise said, computing the pseudo-convexity for the associated potential theory). This is done in this paper, and the answer is interesting. The result carries over to many related equations—for example, those obtained by taking \(\sum _k \arctan \, \lambda _k^{{\mathfrak {g}}}= \theta \) where \({{\mathfrak {g}}}: {\mathrm{Sym}}^2({{\mathbb {R}}}^n)\rightarrow {{\mathbb {R}}}\) is a Gårding-Dirichlet polynomial which is hyperbolic with respect to the identity. A particular example of this is the deformed Hermitian–Yang–Mills equation which appears in mirror symmetry. Another example is \(\sum _j \arctan \kappa _j = \theta \) where \(\kappa _1,\ldots , \kappa _n\) are the principal curvatures of the graph of u in \(\Omega \times {{\mathbb {R}}}\). We also discuss the inhomogeneous Dirichlet Problem

$$\begin{aligned} {\mathrm{tr}}\{\arctan (D^2_x \,u)\} = \psi (x) \end{aligned}$$

where \(\psi : {\overline{\Omega }}\rightarrow (-n {\pi \over 2}, n {\pi \over 2})\). This equation has the feature that the pull-back of \(\psi \) to the Lagrangian submanifold \(L\equiv {\mathrm{graph}}(Du)\) is the phase function \(\theta \) of the tangent spaces of L. On L it satisfies the equation \(\nabla \psi = -JH\) where H is the mean curvature vector field of L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brendle, S., Warren, M.: A boundary value problem for minimal Lagrangian graphs. J. Differ. Geom. 84, 267–287 (2010)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. I: Monge-Ampère equation. Commun. Pure Appl. Math. 37, 369–402 (1984)

    Article  Google Scholar 

  3. Chen, G.: On J-equation, ArXiv preprints (2019). arXiv:1905.10222

  4. Chen, G.: Supercritical deformed Hemitian–Yang–Mills equation. ArXiv preprints (2020). arXiv:2005.12202

  5. Chen, J., Shankar, R., Yuan, Y.: Regularity for convex viscosity solutions of the special Lagrangian equation. arXiv:1911.05452

  6. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. I. Approximation of metrics with cone singularities. J. Am. Math. Soc. 28(1), 183–197 (2015)

    Article  Google Scholar 

  7. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. II. Limits with cone angle less than 2. J. Am. Math. Soc. 28(1), 199–234 (2015)

    Article  Google Scholar 

  8. Chen, X.-X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. III. Limits as cone angle approaches 2 and completion of the main proof. J. Am. Math. Soc. 28(1), 235–278 (2015)

    Article  Google Scholar 

  9. Cirant, M., Payne, K.: Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. arXiv:2001.09658

  10. Collins, T., Jacob, A., Yau, S.-T.: (1, 1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions. arXiv:1508.01934

  11. Collins, T., Picard, S., Wu, X.: Concavity of the Lagrangian phase operator and applications. Calc. Var. Partial Differ. Equ. 56(4), Art. 89 (2017). arXiv:1607.07194

  12. Collins, T.C., Xie, D., Yau, S.-T.: The deformed Hermitian–Yang–Mills equation in geometry and physics. arXiv:1712.00893

  13. Collins, T.C., Shi, Y.: Stability and the deformed Hermitian–Yang–Mills equation. arXiv:2004.04831

  14. Collins, T.C., Yau, S.T.: Moment maps, nonlinear pde, and stability in mirror symmetry. arXiv:1811.04824

  15. Clarke, A., Smith, G.: The Perron method and the non-linear Plateau problem. Geom. Dedicata 163(1), 159–165 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dinew, S., Do, H-S., Tô, T.D.: A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations. arXiv:1712.08572

  17. Dellatorre, M.: The degenerate special Lagrangian equation on Riemannian manifolds. Int. Math. Res. Not. (to appear)

  18. Donaldson, S.K.: Moment Maps and diffeomorphisms, Sir Michael Atiyah: a great mathematician of the twentieth century. Asian J. Math. 3(1), 1–15 (1999)

    Article  MathSciNet  Google Scholar 

  19. Fu, L.: An analogue of Bernstein’s theorem. Houst. J. Math. 24, 415–419 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8(2), 957–965 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Harvey, F.Reese, Lawson, H.Blaine: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  Google Scholar 

  22. Harvey, F.Reese, Lawson, H.Blaine: Dirichlet duality and the non-linear Dirichlet problem. Commun. Pure Appl. Math. 62, 396–443 (2009)

    Article  Google Scholar 

  23. Harvey, F.Reese, Lawson, H.Blaine: Dirichlet duality and the non-linear Dirichlet problem on Riemannian manifolds. J. Differ. Geom. 88(3), 395–482 (2011). arXiv:0907.1981

    Article  Google Scholar 

  24. Harvey, F.R., Lawson, H.B.: Hyperbolic polynomials and the Dirichlet problem. arXiv:0912.5220

  25. Harvey, F.Reese, Lawson, H.Blaine: Gårding’s theory of hyperbolic polynomials. Commun. Pure Appl. Math. 66(7), 1102–1128 (2013)

    Article  Google Scholar 

  26. Harvey, F.Reese, Lawson, H.Blaine: The restriction theorem for fully nonlinear subequations. Ann. Inst. Fourier 64(1), 217–265 (2014). arXiv:1101.4850

    Article  MathSciNet  Google Scholar 

  27. Harvey, F.Reese, Lawson, H.Blaine: Lagrangian potential theory and a Lagrangian equation of Monge–Ampère type. In: Cao, H.-D., Li, J., Schoen, R., Yau, S.-T. (eds.) Surveys in Differential Geometry, vol. 22, pp. 217–257. International Press, Somerville (2018). arXiv:1712.03525

    Google Scholar 

  28. Harvey, F.R., Lawson, H.B.: The inhomogeneous Dirichlet problem for natural operators on manifolds. arXiv:1805.11121

  29. Hitchin, N.J.: The moduli space of special Lagrangian submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(3–4), 503–515 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Jacob, A.: Weak geodesics for the deformed Hermitian–Yang–Mills equation. arXiv:1906.07128

  31. Jacob, A., Yau, S.-T.: A special Lagrangian type equation for holomorphic line bundles. Math. Ann. 369(1-2), 869–898 (2017)

    Article  MathSciNet  Google Scholar 

  32. Jost, J., Xin, Y.-L.: A Bernstein theorem for special Lagrangian graphs. Calc. Var. Partial Differ. Equ. 15, 299–312 (2002)

    Article  MathSciNet  Google Scholar 

  33. Joyce, D.: Conjectures on Bridgeland stability for Fukaya categories of Calabi–Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. EMS Surv. Math. Sci. 2(1), 1–62 (2015)

    Article  MathSciNet  Google Scholar 

  34. Joyce, D.: Special Lagrangian 3-Folds and Integrable Systems. Surveys on Geometry and Integrable Systems. Advanced Studies in Pure Mathematics, vol. 51, pp. 189–233. Math. Soc. Japan, Tokyo (2008)

    Book  Google Scholar 

  35. Joyce, D.: Lectures on Special Lagrangian Geometry. Global Theory of Minimal Surfaces. Clay Mathematics Proceedings, vol. 2, pp. 667–695. Amer. Math. Soc, Providence (2005)

    MATH  Google Scholar 

  36. Joyce, D., Lee, Y.-I., Schoen, R.: On the existence of Hamiltonian stationary Lagrangian submanifolds in symplectic manifolds. Am. J. Math. 133(4), 1067–1092 (2011)

    Article  MathSciNet  Google Scholar 

  37. Leung, N.C., Yau, S.-T., Zaslow, E.: From special Lagrangian to Hermitian–Yang–Mills via Fourier–Mukai transform. Adv. Theor. Math. Phys. 4(6), 1319–1341 (2000)

    Article  MathSciNet  Google Scholar 

  38. Nadirashvili, N., Vladut, S.: Singular solution to the special Lagrangian equations. Ann. Inst. H. Poincare Anal. Non Lineaire 27(5), 1179–1188 (2010)

    Article  MathSciNet  Google Scholar 

  39. Neves, A.: Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. Math. 168(3), 449–484 (2007)

    Article  MathSciNet  Google Scholar 

  40. Neves, A.: Recent Progress on Singularities of Lagrangian Mean Curvature Flow. Surveys in Geometric Analysis and Relativity. Advanced Lectures in Mathematics (ALM), vol. 20, pp. 413–438. Int. Press, Somerville (2011)

    MATH  Google Scholar 

  41. Neves, A.: Finite time singularities for Lagrangian mean curvature flow. Ann. Math. (2) 177(3), 1029–1076 (2013)

    Article  MathSciNet  Google Scholar 

  42. Rubinstein, Y., Solomon, J.: The degenerate special Lagrangian equation. Adv. Math. 310, 889–939 (2017)

    Article  MathSciNet  Google Scholar 

  43. Smith, G.: Special Lagrangian curvature. Math. Ann. 355(1), 57–95 (2013)

    Article  MathSciNet  Google Scholar 

  44. Smith, G.: The non-linear Dirichlet problem in Hadamard manifolds. arXiv:0908.3590

  45. Smith, G.: The non-linear Plateau problem in non-positively curved manifolds. Trans. Am. Math. Soc. 365, 1109–1124 (2013)

    Article  MathSciNet  Google Scholar 

  46. Smith, G.: The Plateau problem for convex curvature functions. Ann. Inst. Fourier (to appear). arXiv:1008.3545

  47. Schoen, R., Wolfson, J.: Minimizing area among Lagrangian surfaces: the mapping problem. J. Differ. Geom. 58, 1–86 (2001)

    Article  MathSciNet  Google Scholar 

  48. Schoen, R., Wolfson, J.: Minimizing Volume Among Lagrangian Submanifolds. Differential Equations: La Pietra 1996 (Florence). Proceedings of Symposia in Pure Mathematics, vol. 65, pp. 181–199. Amer. Math. Soc., Providence (1999)

    Book  Google Scholar 

  49. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479(1–2), 243–259 (1996)

    Article  MathSciNet  Google Scholar 

  50. Takahashi, R.: Tan-concavity property for Lagrangian phase operators and applications to the tangent Lagrangian phase flow. arXiv:2002.05132

  51. Wang, M.-T.: Some Recent Developments in Lagrangian Mean Curvature Flows. Surveys in Differential Geometry, Geometric flows, vol. X II. Int. Press, Somerville (2008)

    Google Scholar 

  52. Wang, D., Yuan, Y.: Singular solutions to the special Lagrangian equations with subcritical phases and minimal surface systems. Am. J. Math. 135(5), 1157–1177 (2013)

    Article  MathSciNet  Google Scholar 

  53. Wang, D., Yuan, Y.: Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions. Am. J. Math. 136, 481–499 (2014)

    Article  MathSciNet  Google Scholar 

  54. Warren, M.: Calibrations associated to Monge–Ampère equations. Trans. Am. Math. Soc. 362, 3947–3962 (2010)

    Article  Google Scholar 

  55. Wolfson, J.: Lagrangian homology classes without regular minimizers. J. Differ. Geom. 71, 307–313 (2005)

    Article  MathSciNet  Google Scholar 

  56. Yuan, Y.: A Bernstein problem for special Lagrangian equations. Invent. Math. 150(1), 117–125 (2002)

    Article  MathSciNet  Google Scholar 

  57. Yuan, Y.: Global solutions to special Lagrangian equations. Proc. A.M.S. 134(5), 1355–1358 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Blaine Lawson Jr..

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the NSF.

Appendices

Appendix A. A Geometric interpretation of the inhomogeneous DP

The Eq. (A.1) below appeared as equation (2.18) in [21]. We left the proof as a exercise for the reader. However, this equation has an immediate consequence for the Dirichlet problem for the inhomogeneous SL equation (A.2), which is discussed in Sect. 5. This is given in Corollary A.2. It may have gone unnoticed and seems not to be well understood. For the convenience of the reader we give the proof of equation (2.18) in [21] here.

Proposition A.1

Let X be a Calabi-Yau manifold of complex dimension n. Let \(\Phi \) be the parallel (n, 0)-form normalized so that \({\mathrm{Re}} \Phi \) has comass 1. Given \(L\subset X\) an oriented Lagrangian submanifold, define the phase \(\theta \) mod \(2\pi \) by

$$\begin{aligned} \Phi \bigr |_L = e^{i\theta } d{\mathrm{vol}}_L. \end{aligned}$$

Then for any tangent vector field V on L, we have

$$\begin{aligned} V \theta = \langle JV, H\rangle , \end{aligned}$$

that is

$$\begin{aligned} \nabla \theta = -JH \end{aligned}$$
(A.1)

where H is the mean-curvature vector field of L, and J is the complex structure on X.

Proposition A.1 has the following immediate implication for the inhomogeneous SL potential equation \({\mathrm{tr}}\left\{ \arctan (D^2_x u) \right\} = \psi (x)\). Let \(z\equiv x+iy \in {{\mathbb {R}}}^n\oplus i {{\mathbb {R}}}^n= {{\mathbb {C}}}^n\)

Corollary A.2

Suppose \(L\equiv \{(x, \nabla u(x)) : x\in \Omega \}\) is the graph of the gradient of \(u\in C^2(\Omega )\) over a domain \(\Omega \subset {{\mathbb {R}}}^n\). Then the inhomogeneous term

$$\begin{aligned} \theta (x) \ \equiv \ {\mathrm{tr}}\left\{ \arctan D_x^2 u \right\} , \end{aligned}$$
(A.2)

considered as a function on L, is the phase function for L. Thus it has gradient related to the mean curvature vector field H of L by

$$\begin{aligned} \nabla \theta = -JH \qquad {\mathrm{on}}\ \ L. \end{aligned}$$
(A.3)

Otherwise said, if u is a solution to the equation

$$\begin{aligned} {\mathrm{tr}}\left\{ \arctan (D^2_x u) \right\} = \psi (x) \end{aligned}$$

on \(\Omega \), with \(\psi (x)\) smooth, then

$$\begin{aligned} \nabla \widetilde{\psi }= -J H \qquad {\mathrm{on}}\ \ \ L \end{aligned}$$
(A.3)

where \(\widetilde{\psi }\) is the pull-back of \(\psi \) to L.

Note. Proposition A.1 is actually independent of the orientation of L. A change of orientation changes the function \(\theta \) to \(\theta +\pi \), and the conclusion is the same. In Corollary A.2, L is given the orientation of \(\Omega \).

Proof of Proposition A.1

By a complex linear change of coordinates we may assume at p we have \(\Phi = dz_1\wedge \cdots \wedge dz_n\). Now let \(p=(x_0, \nabla u(x_0))\). The map \(D^2 u\) is symmetric, so by a change of variables \((x,y) \rightarrow (gx, gy)\) for some \(g\in {\mathrm{SO}}(n)\), we can assume that at \(x_0\), \(D^2 u\) is diagonal, i.e., \((D^2_{x_0} u)(\epsilon _k) = \lambda _k \epsilon _k\) for an orthonormal basis \(\epsilon _1,\ldots , \epsilon _n\) of \({{\mathbb {R}}}^n\).

Now let \(e_1,\ldots , e_n\) be an oriented orthonormal frame field on L in a neighborhood of \(p=(x_0, \nabla u(x_0))\). Then

$$\begin{aligned} \Phi (e_1\wedge \cdots \wedge e_n) = e^{i\theta }, \end{aligned}$$

and so

$$\begin{aligned} V e^{i\theta } = e^{i\theta } i V\theta = \Phi \left( \sum _{k=1}^n e_1\wedge \cdots \wedge (\nabla _V e_k) \wedge \cdots \wedge e_n \right) \end{aligned}$$

since \(\Phi \) is parallel. We may assume \(\nabla ^L_{e_j} e_k = (\nabla _{e_j} e_k)^{{\mathrm{tang}}} = 0\) at \(x_0\), so \(\nabla _V e_k = ( \nabla _V e_k)^{{\mathrm{normal}}} = B_{V, e_k}\) the second fundamental form of L at \(x_0\). Therefore we have

$$\begin{aligned} V e^{i\theta } = e^{i\theta } i V\theta = \Phi \left( \sum _{k=1}^n e_1\wedge \cdots \wedge B_{V, e_k} \wedge \cdots \wedge e_n \right) , \end{aligned}$$

and we can write

$$\begin{aligned} B_{V, e_k} = \sum _{j=1}^n \langle B_{V, e_k} , Je_j\rangle Je_j. \end{aligned}$$

Now pick the frame field at \(x_0\) to be

$$\begin{aligned} e_k = {1\over \sqrt{1+\lambda _k^2}} (\epsilon _k +\lambda _k J\epsilon _k), \qquad {\mathrm{for}} \ \ k=1,\ldots , n, \end{aligned}$$

so that at \(x_0\) the vectors \(e_k\) and \(Je_k\) lie in the \(\hbox {k}\)th complex coordinate line. Recall that at the point p, \(\Phi = dz_1\wedge \cdots \wedge dz_n\). Hence, at p

$$\begin{aligned} \begin{aligned} V e^{i\theta }&= e^{i\theta } i V\theta = \{ dz\}\left( \sum _{k=1}^n e_1\wedge \cdots \wedge B_{V, e_k} \wedge \cdots \wedge e_n \right) \\&= \sum _{k} dz_1(e_1) \cdots dz_k\left( \sum _j \langle B_{V, e_k} , Je_j\rangle Je_j \right) \cdots dz_n(e_n) \\&= \sum _{k} dz_1(e_1) \cdots dz_k\left( \langle B_{V, e_k} , Je_k\rangle Je_k \right) \cdots dz_n(e_n) \\&\equiv \sum _{k} dz_1(e_1) \cdots dz_k\left( \alpha _k Je_k \right) \cdots dz_n(e_n) \qquad {\mathrm{with}}\ \ \alpha _k \equiv \langle B_{V, e_k} , Je_j\rangle \\&= \sum _{k} dz_1(e_1) \cdots i \alpha _k dz_k\left( e_k \right) \cdots dz_n(e_n) \\&= i \sum _k \alpha _k dz(e_1\wedge \cdots \wedge e_n) = i \left( \sum _k \alpha _k\right) e^{i\theta }. \end{aligned} \end{aligned}$$

Hence, with summation convention,

$$\begin{aligned} \begin{aligned} V \theta&=\sum _k \alpha _k = \langle B_{V, e_k} , Je_k\rangle = \langle \nabla _{e_k} V, Je_k\rangle \\&= -\langle V, \nabla _{e_k} Je_k\rangle = - \langle V, J\nabla _{e_k} e_k\rangle = \langle JV, B_{e_k, e_k}\rangle \\&= \langle JV, H\rangle . \end{aligned} \end{aligned}$$

\(\square \)

Appendix B. The sharpness of our boundary convexity

Part of the point of this appendix is to show that strict \(\overrightarrow{\mathbf{F}}_\theta \)-convexity of the boundary \(\partial \Omega \) is the right, i.e., borderline condition for the Dirichlet problem. This goes back to work in [2] for \(\theta \) in the highest interval. We also discuss how this convexity relates to convexity of the domain \(\Omega \).

Let

  • \(\Omega \subset \subset {{\mathbb {R}}}^n\) be a domain with smooth boundary \(\partial \Omega \),

  • \(\mathbf{F}\subset {\mathrm{Sym}}^2({{\mathbb {R}}}^n)\) be a subequation,

  • \(\lambda >0\) be such that \((-{{{\mathcal {P}}}}) \cap (\lambda I+ \mathbf{F}) = \emptyset \) (this always exists), and

  • \(\varphi = -{\lambda \over 2} \Vert x\Vert ^2\bigr |_{\partial \Omega }\).

Definition B.1

\(\Omega \) is said to be \(\mathbf{F}(\Omega )\)-convex if for every \(K\subset \subset \Omega \), one has \({\widehat{K}}^{\mathbf{F}(\Omega )}\subset \subset \Omega \) where \({\widehat{K}}^{\mathbf{F}(\Omega )}{\mathop {=}\limits ^{{\mathrm{def}}}}\{x\in \Omega : f(x) \le \sup _K f, \ \forall \, f\in \mathbf{F}(\Omega )\}\)

Theorem B.2

Assume there exists a function \(h\in C^2({\overline{\Omega }})\) such that

  1. (i)

    \(h\bigr |_{\Omega } \in \mathbf{F}(\Omega )\),

  2. (ii)

    \(h\bigr |_{\partial \Omega } = \varphi \).

Then the domain \(\Omega \) is \(\mathbf{F}\)-convex.

Furthermore, let \(h^\star {\mathop {=}\limits ^{{\mathrm{def}}}}h + {\lambda \over 2} \Vert x\Vert ^2\). Then for every \(x\in \partial \Omega \) where \((Dh^\star )_x \ne 0\), there exits \(A\in ( \lambda I + \mathbf{F})\) such that

$$\begin{aligned} A\bigr |_{T_x(\partial \Omega )} = c_x B_x \end{aligned}$$
(B.1)

where \(c_x>0\) and \(B_x\) is the second fundamental form of \(\partial \Omega \) at x with respect to the interior normal.

In particular, if \(\mathbf{F}= \overrightarrow{{\mathbb {G}}}\) for a subequation \({{\mathbb {G}}}\), then \(\partial \Omega \) is strictly \({{\mathbb {G}}}\)-convex.

Proof

We begin by proving the second assertion. Fix \(p\in \partial \Omega \) and w.l.o.g. assume p is the origin. Choose coordinates \(x= (x', x_n)\) such that in a neighborhood of 0

$$\begin{aligned} \Omega = \{(x', x_n) : x_n \ge g(x')\} \end{aligned}$$

where g is \(C^\infty \) with

$$\begin{aligned} g(0) = 0, \qquad (Dg)_0 = 0, \qquad {\mathrm{and}}\qquad (D^2 g)_0 = B \end{aligned}$$

where \(B \ {\mathop {=}\limits ^{{\mathrm{def}}}}\ \text {the second fundamental form of }\partial \Omega \text { at }0 \text {w.r.t. the interior normal}\).

In a neighborhood U of we have a defining function for \(\Omega \) given by

$$\begin{aligned} \rho (x) \equiv g(x')- x_n \end{aligned}$$
(1)

with

$$\begin{aligned} (D^2 \rho )_0 \ \equiv \ B. \end{aligned}$$

Lemma B.3

If \(\widetilde{\rho }\) is any other defining function for \(\Omega \) in U, then

$$\begin{aligned} (D^2\widetilde{\rho })\bigr |_{T_0(\partial \Omega )} \ \equiv \ |D\widetilde{\rho }|_0 B \end{aligned}$$

Proof

In a neighborhood of 0 we have that \(\widetilde{\rho }(x) = a(x)\rho (x)\) where \(a>0\). Now

$$\begin{aligned}&D\widetilde{\rho }= (Da)\rho + a (D\rho )\\&D^2\widetilde{\rho }= (D^2 a)\rho + (Da)\circ (D\rho ) + a(D^2 \rho ). \end{aligned}$$

At \(x=0\) we have \(\rho (0)=0\) and \((D\rho )_0=(0,\ldots , 0, -1) \equiv n\). Therefore,

$$\begin{aligned}&(D\widetilde{\rho })_0 = (0,\ldots , 0 , -a(0))\\&(D^2\widetilde{\rho })_0 = (Da \circ n) + a(0)(D^2 \rho )_0 \qquad \text {and so}\\&(D^2\widetilde{\rho })\bigr |_{T_0(\partial \Omega )} = a(0)(D^2 \rho )\bigr |_{T_0(\partial \Omega )} = a(0) B. \end{aligned}$$

\(\square \)

Now \(\varphi = -{\lambda \over 2}\Vert x\Vert |^2\bigr |_{\partial \Omega }\), and \( h\in C^2({\overline{\Omega }})\) is \(\mathbf{F}\)-subharmonic on \(\Omega \) with boundary values \(\varphi \). That is,

  1. (1)

    \(D^2 h \ \in \ \mathbf{F}\) on \({\overline{\Omega }}\),

  2. (2)

    \(( h-\varphi )\bigr |_{\partial \Omega } = 0\).

Recall that \( h^\star \ \equiv \ h + \frac{\lambda }{2} \Vert x\Vert ^2 \) Note that \(h^\star \in C^2({\overline{\Omega }})\) is an \(\mathbf{F}^\star \)-subharmonic function for the subequation

$$\begin{aligned} \mathbf{F}^\star \ {\mathop {=}\limits ^{{\mathrm{def}}}}\ \lambda I+\mathbf{F}\end{aligned}$$

with

$$\begin{aligned} h^\star \bigr |_{\partial \Omega } = 0. \end{aligned}$$

Note also that \( D^2 h^\star \ \in \ \lambda I+\mathbf{F}\ \subset \ {\mathrm{Int}}\mathbf{F}\) by the positivity condition. Hence, \(h^\star \) is strictly \(\mathbf{F}\)-subharmonic.

With the supposition that \( (Dh^\star )_x \ne 0 \). we have that \(h^\star \) is a defining function for \(\partial \Omega \) in a neighborhood of x. We now apply Lemma B.3 to establish the second assertion.

Now for the first assertion. By the definition of \(\lambda \) and Theorem 3.1 in [SMP] we know that \(h^\star \) satisfies the Strong Maximum Principle, and so \(h^\star <0\) on \(\Omega \). Suppose \(K\subset \subset \Omega \) and let \(\delta \equiv {\mathrm{dist}}(K,\partial \Omega ) <0\). Then we have \({\widehat{K}}^{\mathbf{F}(\Omega )} \subset \Omega _\delta {\mathop {=}\limits ^{{\mathrm{def}}}}\{x\in \Omega : h^\star (x)\le \delta \}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, F.R., Lawson, H.B. Pseudoconvexity for the special Lagrangian potential equation. Calc. Var. 60, 6 (2021). https://doi.org/10.1007/s00526-020-01850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01850-1

Mathematics Subject Classification

Navigation