Skip to main content

Advertisement

Log in

Geochemical Characteristics and Preliminary Assessment of Geochemical Threshold Values of Technology-Critical Elements in Soils Developed on Different Geological Substrata Along the Sava River Headwaters (Slovenia, Croatia)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The increased demand for technology-critical elements (TCEs) in emerging technologies brings about the need to determine their spatial distribution in the environment and establish regulatory guidelines. In this paper, concentrations of Li, Sc, Nb, W, Ga, Ge, and REY (rare earth elements, including yttrium) in soils collected from different parent materials in the upper catchment of the Sava River (Slovenia, Croatia) were analysed. Results of multivariate (principal component analysis) and univariate (threshold methods) statistical techniques were used to determine geochemical characteristics of studied soils to identify the background variations and to establish geochemical threshold values. The investigated area is characterized by great lithological diversity and substantial variation of TCE concentrations. Among methods for assessment of geochemical threshold, the TIF (Tukey inner fence) and 97.5th percentile delivered the most reasonable results. Some exceedances above the 97.5th percentile were natural in origin, caused by local geology. These findings can provide baseline data because little is known about TCE variation on different geological substrata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, New York

    Book  Google Scholar 

  • Alfaro MR, Nascimento CWA, Biondi CM, Silva YJAB, Silva YJAB, Accioly AMA, Montero A, Ugarte OM, Estevez J (2018) Rare earth-element geochemistry in soils developed in different geological settings of Cuba. CATENA 162:317–324

    Article  CAS  Google Scholar 

  • Babić-Mladenović M, Bekić D, Grošelj S, Kupusović T, Mikoš M, Oskoruš D, Damjanović V, Ninković D, Milačič M, Petković S (2013) Towards practical guidance for sustainable sediment management using the Sava River Basin as a showcase. ISRBC-International Sava River Basin Commission, Zagreb, Croatia

    Google Scholar 

  • Bau M, Schmidt K, Pack A, Bendel V, Kraemer D (2018) The European shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Appl Geochem 90:142–149

    Article  CAS  Google Scholar 

  • Benedicto A, Degueldre C, Missana T (2014) Gallium sorption on montmorillonite and illite colloids: experimental study and modelling by ionic exchange and surface complexation. Appl Geochem 40:43–50

    Article  CAS  Google Scholar 

  • Bern CR (2009) Soil chemistry in lithologically diverse datasets: the quartz dilution effect. Appl Geochem 24(8):1429–1437

    Article  CAS  Google Scholar 

  • Biver M, Filella M (2018) Germanium and solid sample digestion with aqua regia: the nescience of chemistry basics and its sequels. Monatsh Chem 149:461–465

    Article  CAS  Google Scholar 

  • Bogunović M, Vidaček Ž, Racz Z, Husnjak S, Sraka M (1997) Namjenska pedološka karta Republike Hrvatske i njena uporaba (The practical aspects of soil suitability map of Croatia—in Croatian). Agronomski glasnik 59:5–6

    Google Scholar 

  • Cobelo-García A, Filella M, Croot P, Frazzoli C, Du Laing G, Ospina-Alvarez N, Rauch S, Salaun P, Schäfer P, Zimmermann S (2015) COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environ Sci Pollut Res 22(19):15188–15194

    Article  Google Scholar 

  • Davranche M, Grybos M, Gruau G, Pédrot M, Dia A, Marsac R (2011) Rare earth element patterns: a tool for identifying trace metal sources during wetland soil reduction. Chem Geol 284(1–2):127–137

    Article  CAS  Google Scholar 

  • Dobrzyński D, Boguszewska-Czubara A, Sugimori K (2018) Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland). Environ Geochem Health 40(4):1355–1375

    Article  CAS  Google Scholar 

  • Drew LJ, Grunsky EC, Sutphin DM, Woodruff LG (2010) Multivariate analysis of the geochemistry and mineralogy of soils along two continental-scale transects in North America. Sci Total Environ 409(1):218–227

    Article  CAS  Google Scholar 

  • Fedele L, Plant JA, De Vivo B, Lima A (2008) The rare element distribution map over Europe: geogenic and anthropogenic sources. Geochem Explor Environ Anal 8:3–18

    Article  CAS  Google Scholar 

  • Fernández-Caliani JC, Romero-Baena A, González I, Galán E (2020) Geochemical anomalies of critical elements (Be Co, Hf, Sb, Sc, Ta, V, W, Y and REE) in soils of western Andalusia (Spain). Appl Clay Sci 191:105610

    Article  CAS  Google Scholar 

  • Fiket Ž, Medunić G, Furdek-Turk M, Ivanić M, Kniewald G (2017) Influence of soil characteristics on rare earth fingerprints in mosses and mushrooms: Example of a pristine temperate rainforest (Slavonia, Croatia). Chemosphere 179:92–100

    Article  CAS  Google Scholar 

  • Fiket Ž, Mikac N, Kniewald G (2017) Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostand Geoanal Res 41:123–135

    Article  CAS  Google Scholar 

  • Filella M, Rodríguez-Murillo JC (2017) Less-studied TCE: are their environmental concentrations increasing due to their use in new technologies? Chemosphere 182:605–616

    Article  CAS  Google Scholar 

  • Filella M, Rodushkin I (2018) A concise guide for the determination of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) by inductively coupled plasma mass spectrometry in environmental samples. Spectrochim Acta B 141:80–84

    Article  CAS  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. Environmetrics 20(6):621–632

    Article  Google Scholar 

  • Gałuszka A (2007) Different approaches in using and understanding the term “geochemical background”—practical implications for environmental studies. Pol J Environ Stud 16:389–395

    Google Scholar 

  • Gałuszka A, Migaszewski ZM (2011) Geochemical background: an environmental perspective. Mineralogia 42:7–17

    Article  CAS  Google Scholar 

  • Gosar M, Šajn R, Bavec S, Gaberšek M, Pezdir V, Miler M (2019) Geochemical background and threshold for 47 chemical elements in Slovenian topsoil. Geologija 62(1):5–57

    Google Scholar 

  • Grunsky EC, Kjarsgaard BA, Egozcue JJ, Pawlowsky-Glahn V, Thió-Henestrosa S (2008) Studies in stoichiometry with compositional data. In: Presented at the CoDaWork 2008 Proceedings, Girona, Spain, pp 1–7

  • Halamić J, Miko S (2009) Geochemical atlas of the Republic of Croatia. Croatian Geological Survey, Zagreb

    Google Scholar 

  • Hockmann K, Schulin R (2013) Leaching of antimony from contaminated soils. In: Selim HM (ed) Competitive sorption and transport of heavy metals in soils. CRC Press, Taylor & Francis Group, Boca Raton, pp 119–145

    Google Scholar 

  • Hossain HMZ, Kawahata H, Roser BP, Sampei Y, Manaka T, Otani S (2017) Geochemical characteristics of modern river sediments in Myanmar and Thailand: implications for provenance and weathering. Geochemistry 77(3):443–458

    Article  CAS  Google Scholar 

  • Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154(1–2):1–12

    Article  CAS  Google Scholar 

  • Mann A, Reimann C, de Caritat P, Turner M, The Gemas Project Team (2015) Mobile Metal Ion® analysis of European agricultural soils: bioavailability, weathering, geogenic patterns and anthropogenic anomalies. Geochem Explor Environ Anal 15:99–112

    Article  CAS  Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background - can we calculate it? Environ Geol 39(9):990–1000

    Article  CAS  Google Scholar 

  • Meinhold G (2010) Rutile and its applications in earth sciences. Earth Sci Rev 102:1–28

    Article  CAS  Google Scholar 

  • Mikac N, Bačić N, Lučić M, Sondi I (2019) Distribution of some less studied trace elements (Ga, Ge, Nb, Te, Tl, W) and some rare earth elements (La, Y) in sediment cores from unpolluted marine and freshwater lakes in Croatia. In: Filella M, Omanović D, Dror I (eds) COST ACTION TD 1407 final meeting: technology critical elements—sources chemistry and toxicology. Zagreb, p 73

  • Milačič R, Zuliani T, Vidmar J, Oprčkal P, Ščančar J (2017) Potentially toxic elements in water and sediments of the Sava River under extreme flow events. Sci Total Environ 605–606:894–905

    Article  CAS  Google Scholar 

  • Négrel P, Ladenberger A, Reimann C, Birke M, Sadeghi M, The GEMAS Project Team (2016) GEMAS: source, distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale. Appl Geochem 72:113–124

    Article  CAS  Google Scholar 

  • Négrel P, Ladenberger A, Reimann C, Birke M, Demetriades A, Sadeghi M, The GEMAS Project Team (2019) GEMAS: geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping. Appl Geochem 111:104425

    Article  CAS  Google Scholar 

  • Négrel P, Ladenberger A, Reimann C, Birke M, Sadeghi M, The GEMAS Project Team (2018) Distribution of Rb, Ga and Cs in agricultural land soils at European continental scale (GEMAS): implications for weathering conditions and provenance. Chem Geol 479:188–203

    Article  CAS  Google Scholar 

  • Nesbitt H, Young G (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43(2):341–358

    Article  CAS  Google Scholar 

  • Ogrinc N, Markovics R, Kanduč T, Walter LM, Hamilton SK (2008) Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the River Danube. Appl Geochem 23:3685–3698

    Article  CAS  Google Scholar 

  • Pearson K (1897) On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond 60:489–498

    Article  Google Scholar 

  • Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geologija 51(2):205–217

    Article  Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2007) Rare earth elements complexation with humic acid. Chem Geol 243:128–141

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (2017) Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci Total Environ 578:633–648

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39(9):1001–1014

    Article  CAS  Google Scholar 

  • Reimann C, Fabian K, Birke M, Filzmoser P, Demetriades A, Négrel P, Oorts K, Matschullat J, de Caritat P, The GEMAS Project Team (2018) GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl Geochem 88:302–318

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1–3):1–16

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, New York

    Book  Google Scholar 

  • Reimann C, Garrett RG (2005) Geochemical background—concept and reality. Sci Total Environ 350:12–27

    Article  CAS  Google Scholar 

  • Repe B, Simončič P, Vrščaj B (2017) Factors of soil formation. In: Vrščaj B, Repe B, Simončič P (eds) The soils of Slovenia. World soils book series. Springer, Dordrecht, pp 19–60

  • Romero-Freire A, Santos-Echeandía J, Neira P, Cobelo-García A (2019) Less studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) in the marine environment: review on their concentrations in water and organisms. Front Mar Sci 6:532

    Article  Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. Treatise Geochem 4:1–51

    Google Scholar 

  • Salehi M, Beni OH, Harchegani HB, Borujeni IE, Motaghian H (2011) Refining soil organic matter determination by loss-on-ignition. Pedosphere 21:473–482

    Article  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SǺ, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) FOREGS geochemical atlas of Europe, part 1: background information methodology and maps. Geological Survey of Finland, Espoo

    Google Scholar 

  • Scheib AJ, Flight DMA, Birke M, Tarvainen T, Locutura J, GEMAS Project Team (2012) The geochemistry of niobium and its distribution and relative mobility in agricultural soils of Europe. Geochem Explor Env Anal 12:293–302

    Article  CAS  Google Scholar 

  • Scott KM (2005) Rutile geochemistry as a guide to porphyry Cu–Au mineralization, Northparkes, New South Wales, Australia. Geochem Explor Env Anal 5(3):247–253

    Article  CAS  Google Scholar 

  • Starkey HC (1982) The role of clays in fixing lithium. Geol Surv Bull 1278:1–11

    Google Scholar 

  • Šajn R (2003) Distribution of chemical elements in attic dust and soil as reflection of lithology and anthropogenic influence in Slovenia. Journal de Physique 107:1173–1176

    Google Scholar 

  • Šajn R (2005) Using attic dust and soil for the separation of anthropogenicand geogenic elemental distributions in an old metallurgic area (Celje, Slovenia). Geochem Explor Env Anal 5(1):59–67

    Article  Google Scholar 

  • Šajn R, Gosar M (2014) Multivariate statistical approach to identify metal sources in Litija area (Slovenia). J Geochem Explor 138:8–21

    Article  CAS  Google Scholar 

  • Šikić K, Basch O, Šimunić A (1979) Geological Map of SFRJ in scale 1:100000 Explanatory booklet to sheet Zagreb. Federal Geological Survey, Beograd

    Google Scholar 

  • Tošić I, Zorn M, Ortar J, Unkašević M, Gavrilov MB, Marković S (2016) Annual and seasonal variability of precipitation and temperatures in Slovenia from 1961 to 2011. Atmos Res 168:220–233

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) (1987) Soil mechanics level 1, module 3. USDA textural classification study guide. Washington, DC: national employee development staff, soil conservation service, U.S. Department of Agriculture

  • Velić I (2007) An outline of the geology of Croatia. In: Grgasović T, Vlahović I (eds) Field trip guidebook and abstracts. 9th international symposium on fossil algae. Croatian Geological Survey, Zagreb, pp 5–7

  • Vidic N, Pavich M, Lobnik F (1991) Statistical analyses of soil properties on a quaternary terrace sequence in the upper Sava river valley, Slovenia. Yugoslavia Geoderma 51(1–4):189–211

    Article  Google Scholar 

  • Vrščaj B, Repe B, Simončič P (2017) The soils of Slovenia. Springer, Dordrecht

    Book  Google Scholar 

  • Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181

    Article  CAS  Google Scholar 

  • Zanon F, Borga M, Zoccatelli D, Marchi L, Gaume E, Bonnifait L, Delrieu G (2010) Hydrological analysis of a flash flood across a climatic and geologic gradient: the September 18, 2007 event in Western Slovenia. J Hydrol 394:182–197

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Croatian Science Foundation under the project 7555 (TRACESS). The authors are thankful to Drs. Željka Fiket and Martina Furdek-Turk for valuable suggestions in the preparation of the manuscript. The authors also thank the Editor-in-Chief, Associate Editor, and two anonymous referees for their useful comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mavro Lučić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSL 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lučić, M., Vdović, N., Bačić, N. et al. Geochemical Characteristics and Preliminary Assessment of Geochemical Threshold Values of Technology-Critical Elements in Soils Developed on Different Geological Substrata Along the Sava River Headwaters (Slovenia, Croatia). Arch Environ Contam Toxicol 81, 541–552 (2021). https://doi.org/10.1007/s00244-020-00781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00781-4

Navigation