Skip to main content

Advertisement

Log in

Sensing mechanism of hydrogen storage on Li, Na and K-decorated Ti2C

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The adsorption of H2 molecules on Li, Na and K-decorated MXenes (Ti2C) has been investigated with first-principles calculations. A detailed examination of the adsorption mechanism of the Li, Na and K-decorated systems was presented by charge population analysis, electron density and partial density of states calculations. The results show that Li-decorated Ti2C system was found suitable for hydrogen storage. The maximum storage capacity about 4.33 wt% with a suitable average adsorption energy of − 0.26 eV/H2 can be obtained for two Li atoms, which adsorbed on both sides of the Ti2C. It indicates that Li-decorated Ti2C is of great significance for the wide application of MXenes in the field of hydrogen absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Coontz, B. Hanson, Science 305, 957 (2004)

    Google Scholar 

  2. J. Wang, J. Li, S.S. Li, J. Appl. Phys. 114, 124309 (2013)

    ADS  Google Scholar 

  3. D.B. Putungan, S.H. Lin, C.M. Wei, Phys. Chem. Chem. Phys. 17, 11367 (2015)

    Google Scholar 

  4. N. Qiu, Z. Tian, Y. Guo, C. Zhang, Y. Luo, Y. Xue, Int. J. Hydrogen. Energ. 39, 9307 (2014)

    Google Scholar 

  5. M. Wu, Y. Gao, Z. Zhang, X. Zeng, Nanoscale 4, 915 (2012)

    ADS  Google Scholar 

  6. M. Naguib, V.N. Mochalin, M.W. Barsoum, Adv. Mater. 26, 992 (2014)

    Google Scholar 

  7. X. Yu, Y. Li, J. Cheng, Acs. Appl. Mater. Inter. 7, 13707 (2015)

    Google Scholar 

  8. Y. Ando, S. Watanabe, Appl. Phys. Express 9, 015001 (2015)

    ADS  Google Scholar 

  9. C. Liu, E. Li, Acs. Appl. Mater. Inter. 11, 1638 (2018)

    Google Scholar 

  10. H. Lee, I.J.M. Cohen, S. Louie, Nano. Lett. 10, 793 (2010)

    ADS  Google Scholar 

  11. G. Kubas, J. Organomet. Chem. 635, 37 (2001)

    Google Scholar 

  12. E. Eroglu, S. Aydin, M. Şimşek, Int. J. Hydrogen. Energ. 44, 27511 (2019)

    Google Scholar 

  13. C. Ataca, E. Aktürk, S. Ciraci, Phys. Rev. B 79, 041406 (2009)

    ADS  Google Scholar 

  14. S. Haldar, S. Mukherjee, C.V. Singh, Rsc. Adv. 8, 20748 (2018)

    Google Scholar 

  15. Z. Sheng, S. Wu, X. Dai, Phys. Chem. Chem. Phys. 20, 13903 (2018)

    Google Scholar 

  16. C. Ataca, E. Aktürk, S. Ciraci, Appl. Phys. Lett. 93, 043123 (2008)

    ADS  Google Scholar 

  17. E. Durgun, S. Ciraci, W. Zhou, T. Yildirim, Phys. Rev. Lett. 97, 226102 (2006)

    ADS  Google Scholar 

  18. L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, Appl. Surf. Sci. 434, 843 (2018)

    ADS  Google Scholar 

  19. C. Skipper, Doctoral thesis, London: University College, 2012

  20. D. Wang, Y. Gao, Y. Liu, J. Phys. Chem. C 121, 13025 (2017)

    Google Scholar 

  21. R. Cheng, T. Hu, H. Zhang, J. Phys. Chem. C 123, 1099 (2018)

    Google Scholar 

  22. Q. Wan, S. Li, J. Liu, Acs. Appl. Mater. Inter. 10, 6369 (2018)

    Google Scholar 

  23. S. Zhao, W. Kang, J. Xue, J. Phys. Chem. C 118, 14983 (2014)

    Google Scholar 

  24. Y. Yang, M. Yao, X. Wang, J. Phys. Chem. C 123, 17466 (2019)

    Google Scholar 

  25. M. Naguib, O. Mashtalir, J. Carle, ACS Nano 6, 1322 (2012)

    Google Scholar 

  26. Q. Hu, D. Sun, Q. Wu, J. Phys. Chem. A 117, 14253 (2013)

    Google Scholar 

  27. Y.S. Wang, M. Li, F. Wang, Phys. Lett. A 376, 631 (2012)

    ADS  Google Scholar 

  28. T. Hussain, T. Kaewmaraya, Phys. Chem. Chem. Phys. 15, 18900 (2013)

    Google Scholar 

  29. A. Lugo, I. Vasiliev, Phys. Rev. B 76, 235431 (2007)

    ADS  Google Scholar 

  30. O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77, 125416 (2008)

    ADS  Google Scholar 

  31. I. Cabria, M.J. López, J.A. Alonso, J. Chem. Phys. 128, 144704 (2008)

    ADS  Google Scholar 

  32. F. Li, C. Zhang, H. Luan, J. Nanopart. Res. 2013, 15 (1972)

    Google Scholar 

  33. S. Aydin, M. Şimşek, Int. J. Hydrogen. Energy 44, 7354 (2019)

    Google Scholar 

  34. L. Li, X. Cheng, Comput. Mater. Sci. 137, 119 (2017)

    Google Scholar 

  35. Z.M. Ao, F.M. Peeters, Phys. Rev. B 81, 205406 (2010)

    ADS  Google Scholar 

  36. Q. Nianxiang, T. Zhiyue, Int. J. Hydrogen. Energy 39, 9307 (2014)

    Google Scholar 

  37. L. Yibing, E. Blaisten Barojas, Phys. Rev. B 57, 24 (1998)

    Google Scholar 

  38. L. Chen, X. Chen, C. Duan, Y. Huang, Q. Zhang, B. Xiao, Phys. Chem. Chem. Phys. 20, 30304 (2018)

    Google Scholar 

  39. L. Antipina, P. Avramov, S. Sakai, H. Naramoto, M. Ohtomo, S. Entani, Y. Matsumoto, P. Sorokin, Phys. Rev. B 86, 085435 (2012)

    ADS  Google Scholar 

  40. M.W. Chase Jr., J. Phys. Chem. Ref. Data 27, 1310 (1998)

    Google Scholar 

  41. S. Aydin, M. Simsek, Int. J. Hydrogen. Energ. 44, 7354 (2019)

    Google Scholar 

  42. Z. Li, G. Chen, J. Deng, D. Li, T. Yan, Z. An, L. Shi, D. Zhang, A.C.S. Sus, Chem. Eng. 7, 15394 (2019)

    Google Scholar 

  43. L. Wang, X. Chen, H. Du, Y. Yuan, H. Qu, Appl. Surf. Sci. 427, 1030 (2018)

    ADS  Google Scholar 

  44. G.J. Kubas, Chem. Rev. 107, 4152 (2007)

    Google Scholar 

  45. H. Lee, W. Choi, M. Nguyen, M. Cha, E. Moon, J. Ihm, Phys. Rev. B 75, 195110 (2007)

    ADS  Google Scholar 

  46. Q. Hu, H. Wang, Q. Wu, Int. J. Hydrogen. Energy 39, 10606 (2014)

    Google Scholar 

  47. A. Yadav, A. Dashora, N. Patel, Appl. Surf. Sci. 389, 88 (2016)

    ADS  Google Scholar 

  48. Y. Li, Y. Guo, W. Chen, J. Mater. Sci. 54, 493 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province (BK20171442), China Postdoctoral Science Foundation (2018T110480), Open Foundation of State Key Laboratory of Millimeter Waves of Southeast University (K202003), Research Center of Optical Communications Engineering and Technology, Jiangsu Province (ZXF201904), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX19_0283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, W., Feng, Y. et al. Sensing mechanism of hydrogen storage on Li, Na and K-decorated Ti2C. Appl. Phys. A 126, 945 (2020). https://doi.org/10.1007/s00339-020-04123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04123-y

Keywords

Navigation