Skip to main content
Log in

Identification of new, very long-chain polyunsaturated fatty acids in fish by gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with atmospheric pressure chemical ionization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The characterization of very long-chain (>C24) polyunsaturated fatty acids (VLC-PUFAs), which are essential in the vision, neural function, and reproduction of vertebrates, is challenging because of the lack of reference standards and their very low concentrations in certain lipid classes. In this research, we have developed a new methodology for VLC-PUFA identification based on gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with an atmospheric pressure chemical ionization source (GC-APCI-QTOF MS). The mass accuracy attainable with the innovative QTOF instrument, together with the soft ionization of the APCI source, provides valuable information on the intact molecule, traditionally lost with electron ionization sources due to the extensive fragmentation suffered. We have identified, for the first time, VLC-PUFAs with chains up to 44 carbons in eyes, brain, and gonads of gilthead sea bream, a commercially important fish in the Mediterranean. The added value of ion mobility-mass spectrometry (IMS), recently developed in combination with GC-QTOF MS, and the contribution of the collisional cross section (CCS) parameter in the characterization of novel VLC-PUFAs (for which reference standards are not available) have been also evaluated. The methodology developed has allowed assessing qualitative differences between farmed and wild fish, and opens new perspectives in a still scarcely known field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data and material are available.

References

  1. Poulos A, Sharp P, Johnson D, White I, Fellenberg A. The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa. Biochem J. 1986;240:891–5.

    Article  CAS  Google Scholar 

  2. Poulos A, Johnson DW, Beckman K, White IG, Easton C. Occurrence of unusual molecular species of sphingomyelin containing 28-34 carbon polyenoic fatty acids in ram spermatozoa. Biochem J. 1987;248:961–4.

    Article  CAS  Google Scholar 

  3. Aveldano MI, Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem. 1987;262:1180–6.

    Article  CAS  Google Scholar 

  4. Poulos A, Sharp P, Johnson D, Easton C. The occurrence of polyenoic very long chain fatty acids with greater than 32 carbon atoms in molecular species of phosphatidylcholine in normal and peroxisome-deficient (Zellwerger’s syndrome) brain. Biochem J. 1988;253:645–50.

    Article  CAS  Google Scholar 

  5. Furland NE, Maldonado EN, Aveldaño MI. Very long chain PUFA in murine testicular triglycerides and cholesterol esters. Lipids. 2003;38:73–80.

    Article  CAS  Google Scholar 

  6. Agbaga M-P, Brush RS, Mandal MNA, Henry K, Elliot MH, Anderson RE. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A. 2008;105:12843–8.

    Article  CAS  Google Scholar 

  7. Agbaga M-P, Mandal MNA, Anderson RE. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res. 2010;51:1624–42.

    Article  CAS  Google Scholar 

  8. Liu A, Chang J, Lin Y, Shen Z, Bernstein PS. Long chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J Lipid Res. 2010;51:3217–29.

    Article  CAS  Google Scholar 

  9. Liu A, Terry R, Lin Y, Nelson K, Bernstein PS. Comprehensive and sensitive quantification of long-chain and very long-chain polyunsaturated fatty acids in small samples of human and mouse retina. J Chromatogr A. 2013;1307:191–200.

    Article  CAS  Google Scholar 

  10. Deák F, Anderson RE, Fessler JL, Sherry DM. Novel cellular functions of very long chain-fatty acids: insight from ELOVL4 mutations. Front Cell Neurosci. 2019;13:428.

    Article  Google Scholar 

  11. Garlito B, Portolés T, Niessen WMA, Navarro JC, Hontoria F, Monroig O, et al. Identification of very long-chain (>C24) fatty acid methyl esters using gas chromatography coupled to quadrupole/time of flight mass spectrometry with atmospheric pressure chemical ionization source. Anal Chim Acta. 2019;1051:103–9.

  12. Poulos A. Very long chain fatty acids in higher animals—a review. Lipids. 1995;30:1–14.

    Article  CAS  Google Scholar 

  13. Harkewicz R, Du H, Tong Z, Alkuraya H, Bedell M, Sun W, et al. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J Biol Chem. 2012;287:11469–80.

  14. Barabas P, Liu A, Xing W, Chen C-K, Tong Z, Watt CB, et al. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A. 2013;110:5181–6.

  15. Tejada-Casado C, Hernández-Mesa M, Monteau F, Lara FJ, del Olmo-Iruela M, Garcia-Campaña AM, et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Anal Chim Acta. 2018;1043:52–63.

  16. Castro LFC, Tocher DR, Monroig O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res. 2016;62:25–40.

    Article  CAS  Google Scholar 

  17. Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, et al. Ion-mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem. 2017;87:1137–44.

  18. McMahon A, Jackson SN, Woods AS, Kedzierski WA. A Stargardt disease-3 mutation in the mouse Elovl4 gen causes retinal deficiency of C-32-C36 acyl phospathidylcholines. FEBS Lett. 2007;581:5459–63.

    Article  CAS  Google Scholar 

  19. Monroig O, Rotllant J, Cerdá-Reverter JM, Dick JR, Figueras A, Tocher DR. Expression and role of Elovl4 elongases in biosynthesis of very long-chain fatty acids during zebrafish Danio rerio early embryonic development. Biochim Biophys Acta Mol Cell Biol Lipids. 1801;2010:1145–54.

    Google Scholar 

  20. Monroig Ó, Webb K, Ibarra-Castro L, Holt GJ, Tocher DR. Biosynthesis of long-chain polyunsaturated fatty acids in marine fish: characterization of an Elovl4-like elongase from cobia Rachycentron canadum and activation of the pathway during early life stages. Aquaculture. 2011;312:145–53.

    Article  CAS  Google Scholar 

  21. Carmona-Antonanzas G, Monroig Ó, Dick JR, Davie A, Tocher DR. Biosynthesis of very long-chain fatty acids (>24) in Atlantic salmon: cloning, functional characterization, and tissue distribution of an Elovl4 elongase. Comp Biochem Physiol B. 2011;159:122–9.

    Article  Google Scholar 

  22. Monroig Ó, Wan SQ, Zhang L, You CH, Tocher DR, Li Y. Elongation of long-chain fatty acids in rabbitfish Signatus canaliculatus: cloning, functional characterization and tissue distribution of Elovl5 and Elovl4 like elongases. Aquaculture. 2012;350:36–70.

    Google Scholar 

  23. Kloos DP, Gay E, Lingeman H, Bracher F, Müller C, Mayboroda O, et al. Comprehensive gas chromatography-electron ionisation mass spectrometric analysis of fatty acids and sterols using sequential one-pot silylation: quantification and isotopologue analysis. Rapid Commun Mass Spectrom. 2014;28:1507–14.

  24. Portolés T, Ibáñez M, Garlito B, Nácher-Mestre J, Karalazos V, Silva J, et al. Comprehensive strategy for pesticide residue analysis through the production cycle of gilthead sea bream and Atlantic salmon. Chemosphere. 2017;179:242–53.

  25. Hernández F, Ibáñez M, Portolés T, Cervera MI, Sancho JV, Benet FL. Advancing towards universal screening for organic pollutants in waters. J Hazard Mater. 2015;282:86–95.

    Article  Google Scholar 

  26. Portolés T, Mol JGJ, Sancho JV, Hernández F. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Chim Acta. 2014;838:76–85.

    Article  Google Scholar 

  27. Torres M, Navarro JC, Varó I, Agulleiro MJ, Morais S, Monroig O, et al. Expression of genes related to long-chain (C18-22) and very long-chain (>C24) fatty acid biosynthesis in gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis) larvae: investigating early ontogeny and nutritional regulation. Aquaculture. 2020;520:734949.

  28. Torres M, Navarro JC, Varó I, Monroig O, Hontoria F. Nutritional regulation of genes responsible for long-chain (C20-24) and very long-chain (>C24) polyunsaturated fatty acid biosynthesis in post-larvae of gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis). Aquaculture. 2020;525:735314.

    Article  CAS  Google Scholar 

  29. Morais S, Torres M, Hontoria F, Monroig Ó, Varó I, Agulleiro MJ, et al. Molecular and functional characterization of elovl4 genes in Sparus aurata and Solea senegalensis pointing to a critical role in very long-chain (>C24) fatty acids synthesis during early neural development of fish. Int J Mol Sci. 2020;21:3514. https://doi.org/10.3390/ijms21103514.

  30. Folch J, Lees M, Stanley GHSJ. A simple method for the isolation and purification of total lipids from animal tissues. Biol Chem. 1957;226:497–509.

    Article  CAS  Google Scholar 

  31. Christie WWJ. Esterification of fatty acids in adipose-tissue. J Sci Food Agr. 1982;33:809.

    Article  Google Scholar 

  32. Navarro JC, Batty RS, Bell MV, Sargent JR. Rffects of two Artemia diets with different contents of polyunsaturated fatty acids on the lipid composition of larvae of Atlantic herring (Clupea harengus). J Fish Biol. 1993;43:503–15.

    CAS  Google Scholar 

  33. Comission E. COUNCIL DIRECTIVE of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. 1986;86/609/ECC(L358/1).

  34. Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal Chim Acta. 2011;703:114–23.

    Article  CAS  Google Scholar 

  35. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst. 2015;140:1376–85.

    Article  CAS  Google Scholar 

  36. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HHJ. Ion mobility−mass spectrometry. J Mass Spectrom. 2008;43:1–22.

    Article  CAS  Google Scholar 

  37. Bijlsma L, Bade R, Celma A, Mullin L, Cleland G, Stead S, et al. Prediction of collision cross-section values for small molecules: application to pesticide residue analysis. Anal Chem. 2017;89:6583–9.

  38. Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12:797–813.

    Article  CAS  Google Scholar 

  39. Levy AJ, Oranzi NR, Ahmadireskety A, Kemperman RHJ, Wei MS, Yost RA, et al. Recent progress in metabolomics using ion mobility-mass spectrometry. TrAC Trends Anal Chem. 2019;116:274–81.

  40. Lipok C, Hippler J, Schmitz OJ. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry. J Chromatogr A. 2018;1536:50–7.

    Article  CAS  Google Scholar 

  41. Tian L, Zeng Y, Zheng X, Chiu Y, Liu T. Detection of peanut oil adulteration mixed with rapeseed oil using gas chromatography and gas chromatography-ion mobility spectrometry. Food Anal Methods. 2019;12:2282–92.

    Article  Google Scholar 

  42. Li S, Monroig Ó, Wang T, Yuan Y, Navarro JC, Hontoria F, et al. Functional characterization and differential nutritional regulation of putative Elovl5 and Elovl4 elongases in large yellow croaker (Larimichthys crocea). Sci Rep. 2017;7:1–15.

Download references

Acknowledgements

This work has been developed within the framework of the Research Unit of Marine Ecotoxicology (IATS-CSIC/IUPA-UJI). Tania Portolés acknowledges Ramon y Cajal Program from the Ministry of Economy and Competitiveness, Spain (RYC-2017-22525), for funding her research. Carlos Sales acknowledges the financial support from University Jaume I, Spain for his predoctoral grant. Funding: Pla 2018 de Promoció de la Investigació a l’UJI. Research Project: Identificación y cuantificación de ácidos grasos poliinsaturados de cadena muy larga mediante cromatografía de gases acoplada a espectrometría de masas de alta resolución en peces. Ref: UJI-B2018-08. Programa Estatal de Investigacion, Desarrollo e Innovacion orientada a los retos de la sociedad (Ministry of Economy and Competitiveness): Research Project “Acidos grasos poliinsaturados de cadena muy larga en peces: biosíntesis e implicaciones durante fases tempranas de desarrollo en especies cultivadas” (AGL2013-40986-R).

We are grateful with David Fabregat Safont for his help on the fragmentation routes proposal.

Funding

Pla 2018 de Promoció de la Investigació a l’UJI. Research Project: Identificación y cuantificación de ácidos grasos poliinsaturados de cadena muy larga mediante cromatografía de gases acoplada a espectrometría de masas de alta resolución en peces. Ref: UJI-B2018–08. Programa Estatal de Investigación, Desarrollo e Innovación orientada a los retos de la sociedad (Ministry of Economy and Competitiveness): Research Project “Ácidos grasos poliinsaturados de cadena muy larga en peces: biosíntesis e implicaciones durante fases tempranas de desarrollo en especies cultivadas” (AGL2013–40986-R). Ramon y Cajal Program from the Ministry of Economy and Competitiveness, Spain (RYC-2017-22525). The UJI authors acknowledge the financial support from Generalitat Valenciana (Group of Excellence Prometeo 2019/040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roque Serrano.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 461 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, R., Navarro, J.C., Portolés, T. et al. Identification of new, very long-chain polyunsaturated fatty acids in fish by gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem 413, 1039–1046 (2021). https://doi.org/10.1007/s00216-020-03062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03062-0

Keywords

Navigation