Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Developments in the Asymmetric Detrifluoroacetylative Reactions of in situ Generated Mono-Fluorinated Enolates

Author(s): Li Wang, Ziyi Li, Jiang Liu, Jianlin Han*, Hiroki Moriwaki and Vadim A. Soloshonok*

Volume 24, Issue 18, 2020

Page: [2181 - 2191] Pages: 11

DOI: 10.2174/1385272824999200801022712

Price: $65

Abstract

The development of an efficient and mild synthetic methodology for the construction of bioactive fluorine-containing molecules represents one of the hot research topics in general synthetic organic chemistry. In this review, some recent progresses achieved in the development of detrifluoroacetylatively generated mono-fluorinated enolates via CC bond cleavage and their asymmetric nucleophilic reactions for assembly of chiral quaternary C-F center containing compounds.

Keywords: Detrifluoroacetylative reactions, C-F quaternary stereogenic centers, tertiary enolates, asymmetric synthesis, C-C bond cleavage, bioactive compounds.

« Previous
Graphical Abstract
[1]
Ma, J.A.; Cahard, D. Strategies for nucleophilic, electrophilic, and radical trifluoromethylations. J. Fluor. Chem., 2007, 128, 975-996.
[http://dx.doi.org/10.1016/j.jfluchem.2007.04.026]
[2]
Merino, E.; Nevado, C. Addition of CF3 across unsaturated moieties: a powerful functionalization tool. Chem. Soc. Rev., 2014, 43(18), 6598-6608.
[http://dx.doi.org/10.1039/C4CS00025K] [PMID: 24789472]
[3]
Wiehn, M.S.; Vinogradova, E.V.; Togni, A. Electrophilic trifluoromethylation of arenes and N-heteroarenes using hypervalent iodine reagents. J. Fluor. Chem., 2010, 131, 951-957.
[http://dx.doi.org/10.1016/j.jfluchem.2010.06.020]
[4]
Kukhar, V.P.; Sorochinsky, A.E.; Soloshonok, V.A. Practical synthesis of fluorine-containing α- and β-amino acids: recipes from Kiev, Ukraine. Future Med. Chem., 2009, 1(5), 793-819.
[http://dx.doi.org/10.4155/fmc.09.70] [PMID: 21426081]
[5]
Han, J.; Sorochinsky, A.E.; Ono, T.; Soloshonok, V.A. Biomimetic transamination - a metal-free alternative to the reductive amination. Application for generalized preparation of fluorine-containing amines and amino acids. Curr. Org. Synth., 2011, 8, 281-294.
[http://dx.doi.org/10.2174/157017911794697277]
[6]
Turcheniuk, K.V.; Kukhar, V.P.; Roeschenthaler, G.V.; Aceña, J.L.; Soloshonok, V.A.; Sorochinsky, A.E. Recent advances in the synthesis of fluorinated aminophosphonates and aminophosphonic acids. RSC Adv., 2013, 3, 6693-6716.
[http://dx.doi.org/10.1039/c3ra22891f]
[7]
Xu, X.H.; Matsuzaki, K.; Shibata, N. Synthetic methods for compounds having CF3-S units on carbon by trifluoromethylation, trifluoromethylthiolation, triflylation, and related reactions. Chem. Rev., 2015, 115(2), 731-764.
[http://dx.doi.org/10.1021/cr500193b] [PMID: 25121343]
[8]
Aceña, J.L.; Sorochinsky, A.E.; Soloshonok, V.A. Recent advances in the asymmetric synthesis of α-(trifluoromethyl)-containing α-amino acids. Synthesis, 2012, 44(11), 1591-1602.
[http://dx.doi.org/10.1055/s-0031-1289756]
[9]
Mikami, K.; Fustero, S.; Roselló, M.S.; Aceña, J.L.; Soloshonok, V.A.; Sorochinsky, A.E. Synthesis of fluorinated β-amino acids. Synthesis, 2011, 2011(19), 3045-3079.
[http://dx.doi.org/10.1055/s-0030-1260173 ]
[10]
Sorochinsky, A.E.; Soloshonok, V.A. Asymmetric synthesis of fluorine-containing amines, amino alcohols, α-and β-amino acids mediated by chiral sulfinyl group. J. Fluor. Chem., 2010, 131, 127-139.
[http://dx.doi.org/10.1016/j.jfluchem.2009.09.015]
[11]
Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
[12]
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev., 2016, 116(2), 422-518.
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
[13]
Wang, J.; Roselló, M.S.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[14]
Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem., 2014, 167, 37-54.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.026]
[15]
Izawa, K.; Aceña, J.L.; Wang, J.; Soloshonok, V.A.; Liu, H. Small-molecule therapeutics for Ebola Virus (EBOV) disease treatment. Eur. J. Org. Chem., 2016, 2016(1), 8-16.
[http://dx.doi.org/10.1002/ejoc.201501158]
[16]
Mei, H.; Han, J.; Klika, K.D.; Izawa, K.; Sato, T.; Meanwell, N.A.; Soloshonok, V.A. Applications of fluorine-containing amino acids for drug design. Eur. J. Med. Chem., 2020, 186111826
[http://dx.doi.org/10.1016/j.ejmech.2019.111826] [PMID: 31740056]
[17]
Mei, H.; Han, J.; Fustero, S.; Simon, M.M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Fluorine-containing drugs approved by the FDA in 2018. Chemistry, 2019, 25(51), 11797-11819.
[http://dx.doi.org/10.1002/chem.201901840] [PMID: 31099931]
[18]
Mei, H.; Remete, A.M.; Zou, Y.P.; Moriwaki, H.; Fustero, S.; Kiss, L.; Soloshonok, V.A.; Han, J. Fluorine-containing drugs approved by the FDA in 2019. Chin. Chem. Lett., 2020, 31(9), 2401-2413.
[http://dx.doi.org/10.1016/j.cclet.2020.03.050]
[19]
Mei, H.; Han, J.; White, S.; Graham, D.J.; Izawa, K.; Sato, T.; Fustero, S.; Meanwell, N.A.; Soloshonok, V.A. Tailor-made amino acids and fluorinated motifs as prominent traits in modern pharmaceuticals. Chemistry, 2020, 26(50), 11349-11390.
[http://dx.doi.org/10.1002/chem.202000617] [PMID: 32359086]
[20]
Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem., 2014, 167, 16-29.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.014]
[21]
Isanbor, C.; O’Hagan, D. Fluorine in medicinal chemistry: a review of anti-cancer agents. J. Fluor. Chem., 2006, 127, 303-319.
[http://dx.doi.org/10.1016/j.jfluchem.2006.01.011]
[22]
Xu, X.; Sun, D.; Yang, J.; Zhu, G.; Fang, Y.; Gros, C.P.; Bolze, F.; Xu, H.J. Truxene-BODIPY dyads and triads: synthesis, spectroscopic characterization, one and two-photon absorption properties and electrochemistry. Dyes Pigments, 2020, 179108380
[http://dx.doi.org/10.1016/j.dyepig.2020.108380]
[23]
Decostanzi, M.; Campagne, J.M.; Leclerc, E. Fluorinated enol ethers: their synthesis and reactivity. Org. Biomol. Chem., 2015, 13(27), 7351-7380.
[http://dx.doi.org/10.1039/C5OB00855G] [PMID: 26077713]
[24]
Sorochinsky, A.; Voloshin, N.; Markovsky, A.; Belik, M.; Yasuda, N.; Uekusa, H.; Ono, T.; Berbasov, D.O.; Soloshonok, V.A. Convenient asymmetric synthesis of β-substituted α,α-difluoro-β-amino acids via Reformatsky reaction between Davis’ N-sulfinylimines and ethyl bromodifluoroacetate. J. Org. Chem., 2003, 68(19), 7448-7454.
[http://dx.doi.org/10.1021/jo030082k] [PMID: 12968899]
[25]
Khatri, H.R.; Han, C.; Luong, E.; Pan, X.; Adam, A.T.; Alshammari, M.D.; Shao, Y.; Colby, D.A. Controlling the cleavage of carbon-carbon bonds to generate α,α-difluorobenzyl carbanions for the construction of difluoromethylbenzenes. J. Org. Chem., 2019, 84(18), 11665-11675.
[http://dx.doi.org/10.1021/acs.joc.9b01595] [PMID: 31449418]
[26]
Han, C.; Kim, E.H.; Colby, D.A. Cleavage of carbon-carbon bonds through the mild release of trifluoroacetate: generation of α,α-difluoroenolates for aldol reactions. J. Am. Chem. Soc., 2011, 133(15), 5802-5805.
[http://dx.doi.org/10.1021/ja202213f] [PMID: 21443226]
[27]
John, J.P.; Colby, D.A. Synthesis of α-halo-α,α-difluoromethyl ketones by a trifluoroacetate release/halogenation protocol. J. Org. Chem., 2011, 76(21), 9163-9168.
[http://dx.doi.org/10.1021/jo2017179] [PMID: 21995668]
[28]
Zhang, P.; Wolf, C. Catalytic enantioselective difluoroalkylation of aldehydes. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7869-7873.
[http://dx.doi.org/10.1002/anie.201303551] [PMID: 23780866]
[29]
Ding, R.; De Los Santos, Z.A.; Wolf, C. Catalytic asymmetric Mannich reaction of α-fluoronitriles with ketimines: enantioselective and diastereodivergent construction of vicinal tetrasubstituted stereocenters. ACS Catal., 2019, 9(3), 2169-2176.
[http://dx.doi.org/10.1021/acscatal.8b05164] [PMID: 30956891]
[30]
Balaraman, K.; Moskowitz, M.; Liu, Y.; Wolf, C. Detrifluoroacetylative generation of halogenated enolates: practical access to perhalogenated ketones and alkenes. Synthesis (Stuttg), 2016, 48(15), 2376-2384.
[http://dx.doi.org/10.1055/s-0035-1561433] [PMID: 28890578]
[31]
Ding, R.; Bakhshi, P.R.; Wolf, C. Organocatalytic insertion of isatins into aryl difluoronitromethyl ketones. J. Org. Chem., 2017, 82(2), 1273-1278.
[http://dx.doi.org/10.1021/acs.joc.6b02704] [PMID: 28032765]
[32]
Balaraman, K.; Ding, R.; Wolf, C. Stereoselective synthesis of 3,3′-bisindolines by organocatalytic michael additions of fluorooxindole enolates to isatylidene malononitriles in aqueous solution. Adv. Synth. Catal., 2017, 359(23), 4165-4169.
[http://dx.doi.org/10.1002/adsc.201701107] [PMID: 29755308]
[33]
Balaraman, K.; Wolf, C. Catalytic enantioselective and diastereoselective allylic alkylation with fluoroenolates: efficient access to C3-fluorinated and all-carbon quaternary oxindoles. Angew. Chem. Int. Ed. Engl., 2017, 56(5), 1390-1395.
[http://dx.doi.org/10.1002/anie.201608752] [PMID: 28026079]
[34]
Hazlitt, R.A.; Tran, Q.L.; Sowaileh, M.F.; Colby, D.A. Generation of magnesium pentafluoropropen-2-olate from hexafluoroisopropanol and synthesis of 2,2,4,4,4-pentafluoro-3,3-dihydroxyketones. J. Org. Chem., 2017, 82(4), 2231-2236.
[http://dx.doi.org/10.1021/acs.joc.6b02863] [PMID: 28107014]
[35]
Hazlitt, R.A.; John, J.P.; Tran, Q-L.; Colby, D.A. Optimized synthesis of a pentafluoro-gem-diol and conversion to a CF2Br-glucopyranose through trifluoroacetate-release and halogenation. Tetrahedron Lett., 2016, 57(17), 1906-1908.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.064] [PMID: 27182091]
[36]
Sowaileh, M.F.; Colby, D.A. Fluoroenolate-enabled monofluorinations and difluoromethylations. Aldrichim Acta, 2018, 51, 47-59.
[37]
Nguyen, A.L.; Khatri, H.R.; Woods, J.R.; Baldwin, C.S.; Fronczek, F.R.; Colby, D.A. Magnesium-promoted additions of difluoroenolates to unactivated imines. J. Org. Chem., 2018, 83(6), 3109-3118.
[http://dx.doi.org/10.1021/acs.joc.7b03014] [PMID: 29446944]
[38]
Zhang, P.; Wolf, C. Synthesis of pentafluorinated β-hydroxy ketones. J. Org. Chem., 2012, 77(19), 8840-8844.
[http://dx.doi.org/10.1021/jo3017583] [PMID: 22992005]
[39]
Saidalimu, I.; Fang, X.; He, X.P.; Liang, J.; Yang, X.; Wu, F. Highly enantioselective construction of 3-hydroxy oxindoles through a decarboxylative aldol addition of trifluoromethyl α-fluorinated gem-diols to N-benzyl isatins. Angew. Chem. Int. Ed. Engl., 2013, 52(21), 5566-5570.
[http://dx.doi.org/10.1002/anie.201301443] [PMID: 23589222]
[40]
Saidalimu, I.; Fang, X.; Lv, W.; Yang, X.; He, X.P.; Zhang, J.; Wu, F.H. Organocatalytic asymmetric Michael addition/carbon-carbon bond cleavage of trifluoromethyl α-fluorinated gem-diols to nitroolefins. Adv. Synth. Catal., 2013, 355, 857-863.
[http://dx.doi.org/10.1002/adsc.201200757]
[41]
McBee, E.T.; Burton, T.M. The bromination of 1,1,1-trifluoropropanone. J. Am. Chem. Soc., 1952, 74, 3902-3904.
[http://dx.doi.org/10.1021/ja01135a057]
[42]
Hasseldine, R.N. Perfluoroalkyl Grignard reagents. Part II. Reaction of heptafluoropropylmagnesium iodide with carbonyl compounds, and the mechanism of reduction during Grignard reactions. J. Chem. Soc., 1953, 1953, 1748-1757.
[http://dx.doi.org/10.1039/jr9530001748]
[43]
Hauptstein, M.; Brawn, R.A. The reaction of ethyl perfluorobutyrate with sodium. An improved synthesis of perfluoroheptan-4-one. J. Am. Chem. Soc., 1955, 77, 4930-4931.
[http://dx.doi.org/10.1021/ja01623a077]
[44]
Simmons, H.E.; Wiley, D.W. Fluoroketones. I. J. Am. Chem. Soc., 1960, 82, 2288-2296.
[http://dx.doi.org/10.1021/ja01494a047]
[45]
Prager, J.H.; Ogden, P.H. Metal derivatives of fluorinated gem-diols. J. Org. Chem., 1968, 33, 2100-2102.
[http://dx.doi.org/10.1021/jo01269a086]
[46]
Soloshonok, V.A.; Gerus, I.I.; Yagupolskii, Y.L.; Kukhar, V.P. Azomethine‐azomethine isomerization of fluorinated N-benzylimines. Zh. Org. Khim., 1988, 24, 993-997.
[47]
Ohkura, H.; Berbasov, D.O.; Soloshonok, V.A. Chemo- and regioselectivity in the reactions between highly electrophilic fluorine containing dicarbonyl compounds and amines. Improved synthesis of the corresponding imines/enamines. Tetrahedron, 2003, 59, 1647-1656.
[http://dx.doi.org/10.1016/S0040-4020(03)00138-8]
[48]
Berbasov, D.O.; Ojemaye, I.D.; Soloshonok, V.A. Synthesis of highly 1,3-proton shift transferable N-benzyl imines of trifluoroacetophenone under the “low-basicity” reaction conditions. J. Fluor. Chem., 2004, 125, 603-607.
[http://dx.doi.org/10.1016/j.jfluchem.2003.11.032]
[49]
Soloshonok, V.A.; Gerus, I.I.; Yagupolskii, Y.L.; Kukhar, V.P. Fluorine-containing amino acids. III. α-trifluoromethylamino acids. Zh. Org. Khim., 1987, 23, 2308-2313.
[50]
Xie, C.; Wu, L.; Mei, H.; Soloshonok, V.A.; Han, J.; Pan, Y. Operationally convenient method for preparation of sulfonamides containing α,α-difluoro-β-amino carbonyl moiety. Tetrahedron Lett., 2014, 55, 5908-5910.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.001]
[51]
Xie, C.; Wu, L.; Zhou, J.; Mei, H.; Soloshonok, V.A.; Han, J.; Pan, Y. Synthesis of α,α-difluoro-β-amino carbonyl-containing sulfonamides and related compounds. J. Fluor. Chem., 2015, 172, 13-21.
[http://dx.doi.org/10.1016/j.jfluchem.2015.01.004]
[52]
Xie, C.; Wu, L.; Mei, H.; Soloshonok, V.A.; Han, J.; Pan, Y. Generalized access to fluorinated β-keto amino compounds through asymmetric additions of α,α-difluoroenolates to CF3-sulfinylimine. Org. Biomol. Chem., 2014, 12(39), 7836-7843.
[http://dx.doi.org/10.1039/C4OB01575D] [PMID: 25167342]
[53]
Ding, R.; Wolf, C. Catalytic insertion of aldehydes into dihalonitroacetophenones via sequential bond scission-aldol reaction-acyl transfer. Chem. Commun. (Camb.), 2016, 52(17), 3576-3579.
[http://dx.doi.org/10.1039/C5CC09753C] [PMID: 26846436]
[54]
Leng, D.J.; Black, C.M.; Pattison, G. One-pot synthesis of difluoromethyl ketones by a difluorination/fragmentation process. Org. Biomol. Chem., 2016, 14(5), 1531-1535.
[http://dx.doi.org/10.1039/C5OB02468D] [PMID: 26695741]
[55]
Li, W.; Zhu, Y.; Duan, Y.; Zhang, M.; Zhu, C. Monofluoromethylation of tetrahydroisoquinolines by visible‐light induced direct C(sp3)-H bond activation. Adv. Synth. Catal., 2015, 357, 1277-1282.
[http://dx.doi.org/10.1002/adsc.201401146]
[56]
Li, W.; Zhu, X.; Mao, H.; Tang, Z.; Cheng, Y.; Zhu, C. Monofluoromethylation of tetrahydroisoquinolines by visible-light induced direct C(sp3)-H bond activation. Chem. Commun. (Camb.), 2014, 50, 7521-7523.
[http://dx.doi.org/10.1039/C4CC02768J] [PMID: 24888757]
[57]
(a) Mei, H.; Xie, C.; Aceña, J. L.; Soloshonok, V. A.; Röschenthaler, G.V.; Han, J. Recent progress in the in situ detrifluoroacetylative generation of fluoro enolates and their reactions with electrophiles. Eur. J. Org. Chem., 2015, 2015(29), 6401-6412.
[http://dx.doi.org/10.1002/ejoc.201500787]
[58]
Mei, H.; Xie, C.; Han, J.; Soloshonok, V.A. N-tert-butanesulfinyl-(3,3,3)-trifluoroacetaldimine: versatile reagent for asymmetric synthesis of trifluoromethyl-containing amines and amino acids of pharmaceutical importance. Eur. J. Org. Chem., 2016, 2016(36), 5917-5932.
[http://dx.doi.org/10.1002/ejoc.201600578]
[59]
Tian, Y.P.; Gong, Y.; Hu, X.S.; Yu, J.S.; Zhou, Y.; Zhou, J. HClO4 catalysed Aldol-type reaction of fluorinated silyl enol ethers with acetals or ketals toward fluoroalkyl ethers. Org. Biomol. Chem., 2019, 17(43), 9430-9434.
[http://dx.doi.org/10.1039/C9OB02129A] [PMID: 31663579]
[60]
Gong, Y.; Yu, J.S.; Hao, Y.J.; Zhou, Y.; Zhou, J. Catalytic enantioselective Aldol-type reaction using α-fluorinated enolates. Asian J. Org. Chem., 2019, 8, 610-626.
[http://dx.doi.org/10.1002/ajoc.201900071]
[61]
Liao, K.; Hu, X.S.; Zhu, R.Y.; Rao, R.H.; Yu, J.S.; Zhou, F.; Zhou, J. Catalytic enantioselective protonation of monofluorinated silyl enol ethers towards chiral α-fluoroketones. Chin. J. Chem., 2019, 37, 799-806.
[http://dx.doi.org/10.1002/cjoc.201900198]
[62]
Hu, X.S.; Yu, J.S.; Zhou, J. Catalytic selective mono- and difluoroalkylation using fluorinated silyl enol ethers. Chem. Commun. (Camb.), 2019, 55(91), 13638-13648.
[http://dx.doi.org/10.1039/C9CC07677H] [PMID: 31675019]
[63]
Hu, X.S.; Ding, P.G.; Yu, J.S.; Zhou, J.A. Sc(OTf)3 catalyzed Mukaiyama–Mannich reaction of difluoroenoxysilanes with unactivated ketimines. Org. Chem. Front., 2019, 6, 2500-2505.
[http://dx.doi.org/10.1039/C9QO00577C]
[64]
Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.A.; Coelho, J.A.S.; Toste, F.D. Modern approaches for asymmetric construction of carbon-fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev., 2018, 118(7), 3887-3964.
[http://dx.doi.org/10.1021/acs.chemrev.7b00778] [PMID: 29608052]
[65]
Champagne, P.A.; Desroches, J.; Hamel, J.D.; Vandamme, M.; Paquin, J.F. Monofluorination of organic compounds: 10 years of innovation. Chem. Rev., 2015, 115(17), 9073-9174.
[http://dx.doi.org/10.1021/cr500706a] [PMID: 25854146]
[66]
Xie, C.; Wu, L.; Han, J.; Soloshonok, V.A.; Pan, Y. Assembly of fluorinated quaternary stereogenic centers through catalytic enantioselective detrifluoroacetylative Aldol reactions. Angew. Chem. Int. Ed. Engl., 2015, 54(20), 6019-6023.
[http://dx.doi.org/10.1002/anie.201500908] [PMID: 25808758]
[67]
Banks, R.E.; Mohialdin-Khaffaf, S.N.; Lal, G.S.; Sharif, I.; Syvret, R.G. 1-Alkyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane salts: a novel family of electrophilic fluorinating agents. J. Chem. Soc. Chem. Commun., 1992, 8, 595-596.
[http://dx.doi.org/10.1039/c39920000595]
[68]
Banks, R.E.; Besheesh, M.K.; Mohialdin-Khaffaf, S.N.; Sharif, I. N-Halogeno compounds. Part 18. 1-Alkyl-4-fluoro-1,4-diazoniabicyclo [2.2.2]octane salts: user-friendly site-selective electrophilic fluorinating agents of the N-fluoroammonium class. J. Chem. Soc., Perkin Trans. 1, 1996, 1996(16), 2069-2076.
[http://dx.doi.org/10.1039/p19960002069]
[69]
Nyffeler, P.T.; Durón, S.G.; Burkart, M.D.; Vincent, S.P.; Wong, C.H. Selectfluor: mechanistic insight and applications. Angew. Chem. Int. Ed. Engl., 2004, 44(2), 192-212.
[http://dx.doi.org/10.1002/anie.200400648] [PMID: 15578736]
[70]
Mei, H.; Liu, J.; Pajkert, R.; Röschenthaler, G.V.; Han, J. A Selectfluor-promoted oxidative reaction of disulfides and amines: access to sulfinamides. Org. Biomol. Chem., 2020, 18(19), 3761-3766.
[http://dx.doi.org/10.1039/D0OB00720J] [PMID: 32373830]
[71]
Liu, A.; Liu, J.; Mei, H.; Röschenthaler, G.V.; Han, J.L. Selectfluor-promoted two-fold sulfination of alcohols for the synthesis of sulfinic ester from diaryldisulfides. Chin. J. Org. Chem., 2020, 40, 1926-1933.
[http://dx.doi.org/10.6023/cjoc202003004]]
[72]
Xie, C.; Zhang, L.; Sha, W.; Soloshonok, V.A.; Han, J.; Pan, Y. Detrifluoroacetylative in situ generation of free 3-fluoroindolin-2-one-derived tertiary enolates: design, synthesis, and assessment of reactivity toward asymmetric Mannich reactions. Org. Lett., 2016, 18(13), 3270-3273.
[http://dx.doi.org/10.1021/acs.orglett.6b01516] [PMID: 27305459]
[73]
Soloshonok, V.A.; Ohkura, H.; Yasumoto, M. Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid: Part I: enantioselective biomimetic transamination of isopropyl 4,4,4-trifluoro-3-oxo-butanoate. J. Fluor. Chem., 2006, 127, 924-929.
[http://dx.doi.org/10.1016/j.jfluchem.2006.04.003]
[74]
Soloshonok, V.A.; Ohkura, H.; Yasumoto, M. Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid: Part II. Enantioselective biomimetic transamination of 4,4,4-trifluoro-3-oxo-N-[(R)-1-phenylethyl]butanamide. J. Fluor. Chem., 2006, 127, 930-935.
[http://dx.doi.org/10.1016/j.jfluchem.2006.04.004]
[75]
Wang, W.; Fang, X.; Yang, X.; Wu, F. Construction of N-Boc monofluoromethyl aryl sulfones via Mannich reaction of α-amido sulfones with trifluoromethyl α-fluorinated arylsulfonyl gem-diols. J. Fluor. Chem., 2020, 235109537
[http://dx.doi.org/10.1016/j.jfluchem.2020.109537]
[76]
Zhang, L.; Xie, C.; Dai, Y.; Mei, H.; Soloshonok, V.A.; Pan, Y.; Han, J. Catalytic asymmetric detrifluoroacetylative aldol reactions of aliphatic aldehydes for construction of C-F quaternary stereogenic centers. J. Fluor. Chem., 2016, 184, 28-35.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.008]
[77]
Sha, W.; Zhang, L.; Wu, X.; Mei, H.; Han, J.; Soloshonok, V.A.; Pan, Y. Detrifluoroacetylative cascade reactions of bicyclic fluoro-enolates with ortho-phthalaldehyde: aspects of reactivity, diastereo- and enantioselectivity. J. Fluor. Chem., 2017, 196, 14-23.
[http://dx.doi.org/10.1016/j.jfluchem.2016.06.008]
[78]
Nogle, L.M.; Gerwick, W.H. Isolation of four new cyclic depsipeptides, antanapeptins A-D, and dolastatin 16 from a Madagascan collection of Lyngbya majuscula. J. Nat. Prod., 2002, 65(1), 21-24.
[http://dx.doi.org/10.1021/np010348n] [PMID: 11809058]
[79]
Horgen, F.D.; Yoshida, W.Y.; Scheuer, P.J. Malevamides A-C, new depsipeptides from the marine cyanobacterium Symploca laete-viridis. J. Nat. Prod., 2000, 63(4), 461-467.
[http://dx.doi.org/10.1021/np990449+] [PMID: 10785414]
[80]
Luesch, H.; Pangilinan, R.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod., 2001, 64(3), 304-307.
[http://dx.doi.org/10.1021/np000456u] [PMID: 11277744]
[81]
Sha, W.; Zhang, L.; Zhang, W.; Mei, H.; Soloshonok, V.A.; Han, J.; Pan, Y. Catalytic cascade aldol-cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C-F quaternary stereogenic center. Org. Biomol. Chem., 2016, 14(30), 7295-7303.
[http://dx.doi.org/10.1039/C6OB01152G] [PMID: 27397559]
[82]
Soloshonok, V.A.; Berbasov, D.O. Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. J. Fluor. Chem., 2006, 127, 597-603.
[http://dx.doi.org/10.1016/j.jfluchem.2005.11.004]
[83]
Sorochinsky, A.E.; Aceña, J.L.; Soloshonok, V.A. Self-disproportionation of enantiomers of chiral, non-racemic fluoroorganic compounds: role of fluorine as enabling element. Synthesis, 2013, 45, 141-152.
[84]
Yasumoto, M.; Ueki, H.; Soloshonok, V.A. Self-disproportionation of enantiomers of α-trifluoromethyl lactic acid amides via sublimation. J. Fluor. Chem., 2010, 131, 540-544.
[http://dx.doi.org/10.1016/j.jfluchem.2009.11.010]
[85]
Nakamura, T.; Tateishi, K.; Tsukagoshi, S.; Hashimoto, S.; Watanabe, S.; Soloshonok, V.A.; Aceña, J.L.; Kitagawa, O. Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. Tetrahedron, 2012, 68, 4013-4017.
[http://dx.doi.org/10.1016/j.tet.2012.03.054]
[86]
Sorochinsky, A.E.; Katagiri, T.; Ono, T.; Wzorek, A.; Aceña, J.L.; Soloshonok, V.A. Optical purifications via self-disproportionation of enantiomers by achiral chromatography: case study of a series of α-CF3-containing secondary alcohols. Chirality, 2013, 25(6), 365-368.
[http://dx.doi.org/10.1002/chir.22180] [PMID: 23716267]
[87]
Wzorek, A.; Sato, A.; Drabowicz, J.; Soloshonok, V.A. Self-dispro-portionation of enantiomers (SDE) of chiral non-racemic amides via achiral chromatography. Isr. J. Chem., 2016, 56, 977-989.
[http://dx.doi.org/10.1002/ijch.201600077]
[88]
Ueki, H.; Yasumoto, M.; Soloshonok, V.A. Rational application of self-disproportionation of enantiomers via sublimation-a novel methodological dimension for enantiomeric purifications. Tetrahedron Asymmetry, 2010, 21, 1396-1400.
[http://dx.doi.org/10.1016/j.tetasy.2010.04.040]
[89]
Han, J.; Nelson, D.J.; Sorochinsky, A.E.; Soloshonok, V.A. Self-disproportionation of enantiomers via sublimation; new and truly green dimension in optical purification. Curr. Org. Synth., 2011, 8, 310-317.
[http://dx.doi.org/10.2174/157017911794697303]
[90]
Yasumoto, M.; Ueki, H.; Ono, T.; Katagiri, T.; Soloshonok, V.A. Self-disproportionation of enantiomers of isopropyl 3,3,3-(trifluoro)lactate via sublimation: sublimation rates vs. enantiomeric composition. J. Fluor. Chem., 2010, 131, 535-539.
[http://dx.doi.org/10.1016/j.jfluchem.2009.11.026]
[91]
Liu, X.; Zhang, J.; Zhao, L.; Ma, S.; Yang, D.; Yan, W.; Wang, R. Construction of vicinal tetrasubstituted stereocenters with a C-F bond through a catalytic enantioselective detrifluoroacetylative Mannich reaction. J. Org. Chem., 2015, 80(24), 12651-12658.
[http://dx.doi.org/10.1021/acs.joc.5b02238] [PMID: 26574779]
[92]
Bravo, P.; Farina, A.; Kukhar, V.P.; Markovsky, A.L.; Meille, S.V.; Soloshonok, V.A.; Sorochinsky, A.E.; Viani, F.; Zanda, M.; Zappala, C. Stereoselective additions of α-lithiated alkyl-p-tolylsulfoxides to N-PMP(fluoro-alkyl)aldimines. An efficient approach to enantiomerically pure fluoro amino compounds. J. Org. Chem., 1997, 62, 3424-3425.
[http://dx.doi.org/10.1021/jo970004v]
[93]
Bravo, P.; Capelli, S.; Meille, S.V.; Viani, F.; Zanda, M.; Kukhar, V.P.; Soloshonok, V.A. Synthesis of optically pure (R)- and (S)-α-trifluoromethyl-alanine. Tetrahedron Asymmetry, 1994, 5, 2009-2018.
[http://dx.doi.org/10.1016/S0957-4166(00)86276-X]
[94]
Soloshonok, V.A.; Ono, T.; Soloshonok, I.V. Enantioselective biomimetic transamination of β-keto carboxylic acid derivatives. An efficient asymmetric synthesis of β-fluoroalkyl-β-amino acids. J. Org. Chem., 1997, 62, 7538-7539.
[http://dx.doi.org/10.1021/jo9710238]
[95]
Wzorek, A.; Sato, A.; Drabowicz, J.; Soloshonok, V.A. Self-dispro-portionation of enantiomers via achiral gravity-driven column chromatography: a case study of N-acyl-α-phenylethylamines. J. Chromatogr. A, 2016, 1467, 270-278.
[http://dx.doi.org/10.1016/j.chroma.2016.05.044] [PMID: 27240946]
[96]
Suzuki, Y.; Han, J.; Kitagawa, O.; Aceña, J.L.; Klika, K.D.; Soloshonok, V.A. A comprehensive examination of the Self-Disproportionation of Enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. RSC Adv., 2015, 5, 2988-2993.
[http://dx.doi.org/10.1039/C4RA13928C]
[97]
Wzorek, A.; Sato, A.; Drabowicz, J.; Soloshonok, V.A.; Klika, K.D. Enantiomeric enrichments via the Self‐Disproportionation of Enantiomers (SDE) by achiral, gravity‐driven column chromatography: a case study using N-(1-phenylethyl)acetamide for optimizing the enantiomerically pure yield and magnitude of the SDE. Helv. Chim. Acta, 2015, 98, 1147-1159.
[http://dx.doi.org/10.1002/hlca.201500041]
[98]
Wzorek, A.; Sato, A.; Drabowicz, J.; Soloshonok, V.A.; Klika, K.D. Remarkable magnitude of the Self-Disproportionation of Enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters. Amino Acids, 2016, 48(2), 605-613.
[http://dx.doi.org/10.1007/s00726-015-2152-5] [PMID: 26704565]
[99]
Maeno, M.; Tokunaga, E.; Yamamoto, T.; Suzuki, T.; Ogino, Y.; Ito, E.; Shiro, M.; Asahi, T.; Shibata, N. Self-disproportionation of enantiomers of thalidomide and its fluorinated analogue via gravity-driven achiral chromatography: mechanistic rationale and implications. Chem. Sci. (Camb.), 2015, 6(2), 1043-1048.
[http://dx.doi.org/10.1039/C4SC03047H] [PMID: 29560192]
[100]
Xie, C.; Dai, Y.; Mei, H.; Han, J.; Soloshonok, V.A.; Pan, Y. Asymmetric synthesis of quaternary α-fluoro-β-keto-amines via detrifluoroacetylative Mannich reactions. Chem. Commun. (Camb.), 2015, 51(44), 9149-9152.
[http://dx.doi.org/10.1039/C5CC02256H] [PMID: 25947253]
[101]
Robak, M.T.; Herbage, M.A.; Ellman, J.A. Synthesis and applications of tert-butanesulfinamide. Chem. Rev., 2010, 110(6), 3600-3740.
[http://dx.doi.org/10.1021/cr900382t] [PMID: 20420386]
[102]
Tang, T.P.; Ellman, J.A. The tert-butanesulfinyl group: an ideal chiral directing group and boc-surrogate for the asymmetric synthesis and applications of β-amino acids. J. Org. Chem., 1999, 64(1), 12-13.
[http://dx.doi.org/10.1021/jo9820824] [PMID: 11674077]
[103]
Tang, T.P.; Ellman, J.A. Asymmetric synthesis of β-amino acid derivatives incorporating a broad range of substitution patterns by enolate additions to tert-butanesulfinyl imines. J. Org. Chem., 2002, 67(22), 7819-7832.
[http://dx.doi.org/10.1021/jo025957u] [PMID: 12398509]
[104]
Tang, T.P.; Ellman, J.A. Synthesis of Enantiomerically Pure N-tert-butanesulfinyl Imines (tert-butanesulfinimines) by the direct condensation of tert-butanesulfinamide with aldehydes and ketones. J. Org. Chem., 1999, 64, 1278-1284.
[http://dx.doi.org/10.1021/jo982059i]
[105]
Shibata, N.; Nishimine, T.; Shibata, N.; Tokunaga, E.; Kawada, K.; Kagawa, T.; Sorochinsky, A.E.; Soloshonok, V.A. Organic base-catalyzed stereodivergent synthesis of (R)- and (S)-3-amino-4,4,4-trifluorobutanoic acids. Chem. Commun. (Camb.), 2012, 48(34), 4124-4126.
[http://dx.doi.org/10.1039/c2cc30627a] [PMID: 22430371]
[106]
Röschenthaler, G-V.; Kukhar, V.P.; Kulik, I.B.; Belik, M.Y.; Sorochinsky, A.E.; Rusanov, E.B.; Soloshonok, V.A. Asymmetric synthesis of phosphonotrifluoroalanine and its derivatives using N-tert-butanesulfinyl imine derived from fluoral. Tetrahedron Lett., 2012, 53, 539-542.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.096]
[107]
Turcheniuk, K.V.; Poliashko, K.O.; Kukhar, V.P.; Rozhenko, A.B.; Soloshonok, V.A.; Sorochinsky, A.E. Efficient asymmetric synthesis of trifluoromethylated β-aminophosphonates and their incorporation into dipeptides. Chem. Commun. (Camb.), 2012, 48(94), 11519-11521.
[http://dx.doi.org/10.1039/c2cc36702e] [PMID: 23090101]
[108]
Soloshonok, V.A.; Ono, T. The effect of substituents on the feasibility of azomethine-azomethine isomerization: new synthetic opportunities for biomimetic transamination. Tetrahedron, 1996, 52, 14701-14712.
[http://dx.doi.org/10.1016/0040-4020(96)00920-9]
[109]
Soloshonok, V.A.; Kirilenko, A.G.; Fokina, N.A.; Galushko, S.V.; Kukhar, V.P.; Svedas, V.K.; Resnati, G. Chemo-enzymatic approach to the synthesis of each of the four isomers of α-alkyl-β-fluoroalkyl-substituted β-amino acids. Tetrahedron Asymmetry, 1994, 5, 1225-1228.
[http://dx.doi.org/10.1016/0957-4166(94)80163-0]
[110]
Soloshonok, V.A.; Kirilenko, A.G.; Kukhar, V.P.; Resnati, G. Transamination of fluorinated β-keto carboxylic esters. A biomimetic approach to β-polyfluoroalkyl-β-amino acids. Tetrahedron Lett., 1993, 34, 3621-3624.
[http://dx.doi.org/10.1016/S0040-4039(00)73652-5]
[111]
Mei, H.; Xie, C.; Wu, L.; Soloshonok, V.A.; Han, J.; Pan, Y. Asymmetric Mannich reactions of imidazo[2,1-b]thiazole-derived nucleophiles with (S(S))-N-tert-butanesulfinyl (3,3,3)-trifluoroacetaldimine. Org. Biomol. Chem., 2013, 11(46), 8018-8021.
[http://dx.doi.org/10.1039/c3ob41785a] [PMID: 24163018]
[112]
Xie, C.; Mei, H.; Wu, L.; Soloshonok, V.A.; Han, J.; Pan, Y. LDA-promoted asymmetric synthesis of β-trifluoromethyl-β-amino indanone derivatives with virtually complete stereochemical outcome. RSC Adv., 2014, 4, 4763-4768.
[http://dx.doi.org/10.1039/C3RA45773G]
[113]
Mei, H.; Xiong, Y.; Xie, C.; Soloshonok, V.A.; Han, J.; Pan, Y. Concise and scalable asymmetric synthesis of 5-(1-amino-2,2,2-trifluoroethyl)thiazolo [3,2-b][1,2,4]triazoles. Org. Biomol. Chem., 2014, 12(13), 2108-2113.
[http://dx.doi.org/10.1039/C3OB42348D] [PMID: 24553668]
[114]
Zhu, Y.; Zhang, W.; Mei, H.; Han, J.; Soloshonok, V.A.; Pan, Y. Catalytic enantioselective Michael addition reactions of tertiary enolates generated by detrifluoroacetylation. Chemistry, 2017, 23(47), 11221-11225.
[http://dx.doi.org/10.1002/chem.201702091] [PMID: 28639718]
[115]
Xie, C.; Zhang, L.; Mei, H.; Han, J.; Soloshonok, V.A.; Pan, Y. Development and evaluation of different methods for preparation of fluorine-containing (R)- and (S)-N-tert-butanesulfinyl–aldimines. ChemistrySelect, 2016, 1, 4435-4439.
[http://dx.doi.org/10.1002/slct.201601197]
[116]
Zhu, Y.; Ni, Y.; Soloshonok, V.A.; Han, J.L.; Pan, Y. Catalytic enantioselective Michael addition reactions between in situ detrifluoroacetylatively generated 3-fluorooxindole-derived enolates and 1-(1-(phenylsulfonyl)-vinylsulfonyl)benzene. J. Fluor. Chem., 2019, 219, 32-38.
[http://dx.doi.org/10.1016/j.jfluchem.2018.12.009]
[117]
Sowaileh, M.F.; Han, C.; Hazlitt, R.A.; Kim, E.H.; John, J.P.; Colby, D.A. Conversion of methyl ketones and methyl sulfones into α-deutero-α,α-difluoromethyl ketones and α-deutero-α,α-difluoromethyl sulfones in three synthetic steps. Tetrahedron Lett., 2017, 58(5), 396-400.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.018] [PMID: 28943667]
[118]
Fang, X.; Zhou, J.; Wang, W.; Yang, X.; Wu, F. Highly stereoselective monofluoroolefination: Facile access to (E)-a-fluorinated arylvinyl sulfones from trifluoromethyl a-fluorinated arylsulfonyl gem-diols. Tetrahedron Lett., 2020, 61151964
[http://dx.doi.org/10.1016/j.tetlet.2020.151964]
[119]
Soloshonok, V.A.; Wzorek, A.; Klika, K.D. A question of policy: should tests for the Self-Disproportionation of Enantiomers (SDE) be mandatory for reports involving scalemates? Tetrahedron Asymmetry, 2017, 28, 1430-1434.
[http://dx.doi.org/10.1016/j.tetasy.2017.08.020]
[120]
Han, J.; Kitagawa, O.; Wzorek, A.; Klika, K.D.; Soloshonok, V.A. The Self-Disproportionation of Enantiomers (SDE): a menace or an opportunity? Chem. Sci. (Camb.), 2018, 9(7), 1718-1739.
[http://dx.doi.org/10.1039/C7SC05138G] [PMID: 29675218]
[121]
Han, J.; Soloshonok, V.A.; Klika, K.D.; Drabowicz, J.; Wzorek, A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev., 2018, 47(4), 1307-1350.
[http://dx.doi.org/10.1039/C6CS00703A] [PMID: 29271432]
[122]
Yasumoto, M.; Ueki, H.; Soloshonok, V.A. Self-disproportionation of enantiomers of trifluoro lactic acid amides via sublimation. J. Fluor. Chem., 2010, 131, 266-269.
[http://dx.doi.org/10.1016/j.jfluchem.2009.10.002]
[123]
Soloshonok, V.A.; Klika, K.D. Terminology related to the phenomenon ‘Self-Disproportionation of Enantiomers’ (SDE). Helv. Chim. Acta, 2014, 97, 1583-1589.
[http://dx.doi.org/10.1002/hlca.201400122]
[124]
Wzorek, A.; Klika, K.D.; Drabowicz, J.; Sato, A.; Aceña, J.L.; Soloshonok, V.A. The Self-Disproportionation of the Enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. Org. Biomol. Chem., 2014, 12(26), 4738-4746.
[http://dx.doi.org/10.1039/c4ob00831f] [PMID: 24873904]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy