Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes and consequences of RNA polymerase II stalling during transcript elongation

Abstract

The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nucleotide addition cycle and backtracking.
Fig. 2: Structural changes of Pol II during elongation, backtracking and pausing.
Fig. 3: Intrinsic barriers to transcript elongation.
Fig. 4: Conflicts involving RNA polymerase II during transcript elongation.
Fig. 5: Pol II degradation in response to ultraviolet light.
Fig. 6: Fates of stalled or arrested Pol II.

Similar content being viewed by others

References

  1. Bentley, D. L. & Groudine, M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321, 702–706 (1986).

    CAS  PubMed  Google Scholar 

  2. Eick, D. & Bornkamm, G. W. Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Res. 14, 8331–8346 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Muse, T. & Aguilera, A. Transcription-replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 17, 553–563 (2016).

    CAS  PubMed  Google Scholar 

  5. Martinez-Rucobo, F. W. & Cramer, P. Structural basis of transcription elongation. Biochim. Biophys. Acta 1829, 9–19 (2013).

    CAS  PubMed  Google Scholar 

  6. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

    CAS  PubMed  Google Scholar 

  7. Dangkulwanich, M. et al. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife 2, e00971 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. Cell 149, 1438–1445 (2012).

    CAS  PubMed  Google Scholar 

  9. Bar-Nahum, G. et al. A ratchet mechanism of transcription elongation and its control. Cell 120, 183–193 (2005).

    CAS  PubMed  Google Scholar 

  10. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, X., Bushnell, D. A. & Kornberg, R. D. RNA polymerase II transcription: structure and mechanism. Biochim. Biophys. Acta 1829, 2–8 (2013).

    CAS  PubMed  Google Scholar 

  12. Brueckner, F. et al. Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr. D Biol. Crystallogr. 65, 112–120 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adelman, K. et al. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc. Natl Acad. Sci. USA 99, 13538–13543 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Galburt, E. A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).

    CAS  PubMed  Google Scholar 

  15. Ishibashi, T. et al. Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics. Proc. Natl Acad. Sci. USA 111, 3419–3424 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Conaway, R. C. & Conaway, J. W. The hunt for RNA polymerase II elongation factors: a historical perspective. Nat. Struct. Mol. Biol. 26, 771–776 (2019).

    CAS  PubMed  Google Scholar 

  17. Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33–41 (1997).

    CAS  PubMed  Google Scholar 

  18. Cheung, A. C. & Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471, 249–253 (2011).

    CAS  PubMed  Google Scholar 

  19. Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sekimizu, K., Kobayashi, N., Mizuno, D. & Natori, S. Purification of a factor from Ehrlich ascites tumor cells specifically stimulating RNA polymerase II. Biochem 15, 5064–5070 (1976).

    CAS  Google Scholar 

  21. Rappaport, J., Reinberg, D., Zandomeni, R. & Weinmann, R. Purification and functional characterization of transcription factor SII from calf thymus. Role in RNA polymerase II elongation. J. Biol. Chem. 262, 5227–5232 (1987).

    CAS  PubMed  Google Scholar 

  22. Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. Transcription factor IIS stimulates elongation of RNA chains. J. Biol. Chem. 262, 3331–3337 (1987).

    CAS  PubMed  Google Scholar 

  23. Reines, D. Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. J. Biol. Chem. 267, 3795–3800 (1992).

    CAS  PubMed  Google Scholar 

  24. Reines, D., Chamberlin, M. J. & Kane, C. M. Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J. Biol. Chem. 264, 10799–10809 (1989).

    CAS  PubMed  Google Scholar 

  25. Izban, M. G. & Luse, D. S. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3’–5’ direction in the presence of elongation factor SII. Genes Dev. 6, 1342–1356 (1992).

    CAS  PubMed  Google Scholar 

  26. Izban, M. G. & Luse, D. S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267, 13647–13655 (1992).

    CAS  PubMed  Google Scholar 

  27. Gu, W. & Reines, D. Identification of a decay in transcription potential that results in elongation factor dependence of RNA polymerase II. J. Biol. Chem. 270, 11238–11244 (1995).

    CAS  PubMed  Google Scholar 

  28. Wang, D. et al. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324, 1203–1206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    CAS  PubMed  Google Scholar 

  30. Kettenberger, H., Armache, K. J. & Cramer, P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114, 347–357 (2003).

    CAS  PubMed  Google Scholar 

  31. Lisica, A. et al. Mechanisms of backtrack recovery by RNA polymerases I and II. Proc. Natl Acad. Sci. USA 113, 2946–2951 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zatreanu, D. et al. Elongation factor TFIIS prevents transcription stress and R-loop accumulation to maintain genome stability. Mol. Cell 76, 57–69 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheridan, R. M., Fong, N., D’Alessandro, A. & Bentley, D. L. Widespread backtracking by RNA Pol II is a major effector of gene activation, 5’ pause release, termination, and transcription elongation rate. Mol. Cell 73, 107–118 e104 (2019). Zatreanu et al. (2019) and Sheridan et al. (2019) analyse genome-wide effects on transcription of the expression of a dominant-negative TFIIS mutant.

    CAS  PubMed  Google Scholar 

  35. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nojima, T. et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature termination: a forgotten mechanism. Trends Genet. 35, 553–564 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar, A., Clerici, M., Muckenfuss, L. M., Passmore, L. A. & Jinek, M. Mechanistic insights into mRNA 3′-end processing. Curr. Opin. Struct. Biol. 59, 143–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Peck, S. A., Hughes, K. D., Victorino, J. F. & Mosley, A. L. Writing a wrong: coupled RNA polymerase II transcription and RNA quality control. Wiley Interdiscip. Rev. RNA 10, e1529 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell Biol. 6, 3984–3989 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).

    CAS  PubMed  Google Scholar 

  46. Krebs, A. R. et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67, 411–422 e414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Erickson, B., Sheridan, R. M., Cortazar, M. & Bentley, D. L. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev. 32, 1215–1225 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Steurer, B. et al. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA polymerase II. Proc. Natl Acad. Sci. USA 115, E4368–E4376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gressel, S. et al. CDK9-dependent RNA polymerase II pausing controls transcription initiation. eLife https://doi.org/10.7554/eLife.29736 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995).

    CAS  PubMed  Google Scholar 

  51. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    CAS  PubMed  Google Scholar 

  53. Wu, C. H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    CAS  PubMed  Google Scholar 

  55. Missra, A. & Gilmour, D. S. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc. Natl Acad. Sci. USA 107, 11301–11306 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vos, S. M. et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612 (2018). Vos et al. (Nature 560, 601–606, 2018) and Vos et al. (Nature 560, 607–612, 2018) provide structural insight into the mechanisms regulating promoter-proximal pausing and the transition to productive elongation during the early stages of transcription.

    CAS  PubMed  Google Scholar 

  57. Vos, S. M., Farnung, L., Linden, A., Urlaub, H. & Cramer, P. Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat. Struct. Mol. Biol. 27, 668–677 (2020).

    CAS  PubMed  Google Scholar 

  58. Hendrix, D. A., Hong, J. W., Zeitlinger, J., Rokhsar, D. S. & Levine, M. S. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc. Natl Acad. Sci. USA 105, 7762–7767 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fant, C. B. et al. TFIID enables RNA polymerase II promoter-proximal pausing. Mol. Cell 78, 785–793 e788 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Renner, D. B., Yamaguchi, Y., Wada, T., Handa, H. & Price, D. H. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 11, 42601–42609 (2001).

    Google Scholar 

  61. Cheng, B. & Price, D. H. Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation. J. Biol. Chem. 282, 21901–21912 (2007).

    CAS  PubMed  Google Scholar 

  62. Weber, C. M., Ramachandran, S. & Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53, 819–830 (2014).

    CAS  PubMed  Google Scholar 

  63. Adelman, K. et al. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17, 103–112 (2005).

    CAS  PubMed  Google Scholar 

  64. Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. 20, 705–723 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    CAS  PubMed  Google Scholar 

  67. Izban, M. G. & Luse, D. S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5, 683–696 (1991).

    CAS  PubMed  Google Scholar 

  68. Bondarenko, V. A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24, 469–479 (2006).

    CAS  PubMed  Google Scholar 

  69. Kulaeva, O. I. et al. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat. Struct. Mol. Biol. 16, 1272–1278 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kulaeva, O. I. & Studitsky, V. M. Mechanism of histone survival during transcription by RNA polymerase II. Transcription 1, 85–88 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Kujirai, T. et al. Structural basis of the nucleosome transition during RNA polymerase II passage. Science 362, 595–598 (2018). This study reveals different conformations of Pol II as it transcribes nucleosomal DNA, and how histone–DNA interactions contribute to nucleosome-dependent transcription stalling.

    CAS  PubMed  Google Scholar 

  72. Farnung, L., Vos, S. M. & Cramer, P. Structure of transcribing RNA polymerase II-nucleosome complex. Nat. Commun. 9, 5432 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Crickard, J. B., Lee, J., Lee, T. H. & Reese, J. C. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Res. 45, 6362–6374 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kujirai, T. & Kurumizaka, H. Transcription through the nucleosome. Curr. Opin. Struct. Biol. 61, 42–49 (2020).

    CAS  PubMed  Google Scholar 

  75. Teves, S. S., Weber, C. M. & Henikoff, S. Transcribing through the nucleosome. Trends Biochem. Sci. 39, 577–586 (2014).

    CAS  PubMed  Google Scholar 

  76. Svejstrup, J. Q. Chromatin elongation factors. Curr. Opin. Genet. Dev. 12, 156–161 (2002).

    CAS  PubMed  Google Scholar 

  77. Kireeva, M. L. et al. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 18, 97–108 (2005).

    CAS  PubMed  Google Scholar 

  78. Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    CAS  PubMed  Google Scholar 

  80. Aoi, Y. et al. NELF regulates a promoter-proximal step distinct from RNA Pol II pause-release. Mol. Cell 78, 261–274 e265 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, Z. et al. High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. eLife https://doi.org/10.7554/eLife.48281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kireeva, M. L., Komissarova, N., Waugh, D. S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275, 6530–6536 (2000).

    CAS  PubMed  Google Scholar 

  83. Saeki, H. & Svejstrup, J. Q. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol. Cell 35, 191–205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, J. & Landick, R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem. Sci. 41, 293–310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zamft, B., Bintu, L., Ishibashi, T. & Bustamante, C. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8948–8953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488–503 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011). Kwak et al. (2013), Nojima et al. (2015), Mayer et al. (2015) and Churchman and Weissman (2011) describe nascent-transcriptome sequencing methods that have revolutionized our understanding of Pol II dynamics at eukaryotic genes.

    CAS  PubMed  Google Scholar 

  88. Tome, J. M., Tippens, N. D. & Lis, J. T. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers. Nat. Genet. 50, 1533–1541 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Watts, J. A. et al. cis elements that mediate RNA polymerase II pausing regulate human gene expression. Am. J. Hum. Genet. 105, 677–688 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Szlachta, K. et al. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol. 19, 89 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Gregersen, L. H. & Svejstrup, J. Q. The cellular response to transcription-blocking DNA damage. Trends Biochem. Sci. 43, 327–341 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019).

    CAS  PubMed  Google Scholar 

  93. Machour, F. E. & Ayoub, N. Transcriptional regulation at DSBs: mechanisms and consequences. Trends Genet. https://doi.org/10.1016/j.tig.2020.01.001 (2020).

  94. Caron, P. et al. WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks. Genes Dev. 33, 684–704 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. García-Muse, T. & Aguilera, A. Transcription–replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 17, 553–563 (2016).

    PubMed  Google Scholar 

  96. Gomez-Gonzalez, B. & Aguilera, A. Transcription-mediated replication hindrance: a major driver of genome instability. Genes Dev. 33, 1008–1026 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hamperl, S. & Cimprich, KarleneA. Conflict resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    CAS  PubMed  Google Scholar 

  99. Rivera-Mulia, J. C. & Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect — part III. Curr. Opin. Cell Biol. 40, 168–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Meryet-Figuiere, M. et al. Temporal separation of replication and transcription during S-phase progression. Cell Cycle 13, 3241–3248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412–418 (2013).

    CAS  PubMed  Google Scholar 

  102. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

    CAS  PubMed  Google Scholar 

  103. Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170, 774–786 e719 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sanchez, A. et al. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. PLoS Genet. 16, e1008524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shao, X., Joergensen, A. M., Howlett, N. G., Lisby, M. & Oestergaard, V. H. A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts. Nucleic Acids Res. 48, 5467–5484 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Takeuchi, Y., Horiuchi, T. & Kobayashi, T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17, 1497–1506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24, 1267–1276 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Teloni, F. et al. Efficient pre-mRNA cleavage prevents replication-stress-associated genome instability. Mol. Cell 73, 670–683 e612 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nojima, T. et al. Deregulated expression of mammalian lncRNA through loss of SPT6 induces R-loop formation, replication stress, and cellular senescence. Mol. Cell 72, 970–984.e97 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kanagaraj, R. et al. RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription. Nucleic Acids Res. 38, 8131–8140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Aygun, O. et al. Direct inhibition of RNA polymerase II transcription by RECQL5. J. Biol. Chem. 284, 23197–23203 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. Saponaro, M. et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157, 1037–1049 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Prescott, E. M. & Proudfoot, N. J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl Acad. Sci. USA 99, 8796–8801 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Garcia-Rubio, M. L. & Aguilera, A. Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes. Nucleic Acids Res. 40, 1050–1064 (2012).

    CAS  PubMed  Google Scholar 

  116. Hobson, D. J., Wei, W., Steinmetz, L. M. & Svejstrup, J. Q. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48, 365–374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kulaeva, O. I., Hsieh, F.-K. & Studitsky, V. M. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc. Natl Acad. Sci. USA 107, 11325–11330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cui, F., Cole, H. A., Clark, D. J. & Zhurkin, V. B. Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res. 40, 10753–10764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cole, H. A., Ocampo, J., Iben, J. R., Chereji, R. V. & Clark, D. J. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res. 42, 12512–12522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pannunzio, N. R. & Lieber, M. R. Dissecting the roles of divergent and convergent transcription in chromosome instability. Cell Rep. 14, 1025–1031 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kamieniarz-Gdula, K. et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination. Mol. Cell 74, 158–172 e159 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Cinghu, S. et al. Intragenic enhancers attenuate host gene expression. Mol. Cell 68, 104–117 e106 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS  PubMed  Google Scholar 

  124. Tufegdzic Vidakovic, A. et al. Regulation of the RNAPII pool is integral to the DNA damage response. Cell 180, 1245–1261 e1221 (2020). This study shows that regulation of global Pol II levels is essential to control transcription activity in response to UV-induced DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chiou, Y. Y., Hu, J., Sancar, A. & Selby, C. P. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).

    CAS  PubMed  Google Scholar 

  126. Lavigne, M. D., Konstantopoulos, D., Ntakou-Zamplara, K. Z., Liakos, A. & Fousteri, M. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. Nat. Commun. 8, 2076 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Borisova, M. E. et al. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9, 1017 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Bugai, A. et al. P-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. Mol. Cell 74, 254–267.e210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 43, 2744–2756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Williamson, L. et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168, 843–855 e813 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829, 151–157 (2013).

    CAS  PubMed  Google Scholar 

  132. Venema, J., Mullenders, L. H., Natarajan, A. T., van Zeeland, A. A. & Mayne, L. V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl Acad. Sci. USA 87, 4707–4711 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).

    CAS  PubMed  Google Scholar 

  134. Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Xu, J. et al. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653–657 (2017). Structural analysis of the yeast CSB homologue Rad26 provides insight into how CSB might function in the regulation of Pol II stalling and TC-NER.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Charlet-Berguerand, N. et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 25, 5481–5491 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kuraoka, I. et al. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair 6, 841–851 (2007).

    CAS  PubMed  Google Scholar 

  138. Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279, 18511–18520 (2004).

    CAS  PubMed  Google Scholar 

  139. Jansen, L. E. et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 19, 6498–6507 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ding, B., LeJeune, D. & Li, S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J. Biol. Chem. 285, 5317–5326 (2010).

    CAS  PubMed  Google Scholar 

  141. Li, W., Giles, C. & Li, S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res. 42, 7069–7083 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Duan, M., Selvam, K., Wyrick, J. J. & Mao, P. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin. Proc. Natl Acad. Sci. USA 117, 18608–18616 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gaillard, H. et al. Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair. PLoS Genet. 5, e1000364 (2009).

    PubMed  PubMed Central  Google Scholar 

  144. Selby, C. P. & Sancar, A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272, 1885–1890 (1997).

    CAS  PubMed  Google Scholar 

  145. Selby, C. P. & Sancar, A. Molecular mechanism of transcription-repair coupling. Science 260, 53–58 (1993).

    CAS  PubMed  Google Scholar 

  146. Caron, P., van der Linden, J. & van Attikum, H. Bon voyage: a transcriptional journey around DNA breaks. DNA Repair 82, 102686 (2019).

    CAS  PubMed  Google Scholar 

  147. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gao, L. & Gross, D. S. Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation. Mol. Cell Biol. 28, 3979–3994 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Awwad, S. W., Abu-Zhayia, E. R., Guttmann-Raviv, N. & Ayoub, N. NELF-E is recruited to DNA double-strand break sites to promote transcriptional repression and repair. EMBO Rep. 18, 745–764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pankotai, T., Bonhomme, C., Chen, D. & Soutoglou, E. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat. Struct. Mol. Biol. 19, 276–282 (2012).

    CAS  PubMed  Google Scholar 

  151. Burger, K., Ketley, R. F. & Gullerova, M. Beyond the trinity of ATM, ATR, and DNA-PK: multiple kinases shape the DNA damage response in concert with RNA metabolism. Front. Mol. Biosci. 6, 61 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2016).

    PubMed  Google Scholar 

  153. Skourti-Stathaki, K., Proudfoot, Nicholas, J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9, 533 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol. 21, 1286–1299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Burger, K., Schlackow, M. & Gullerova, M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res. 47, 3467–3484 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ohle, C. et al. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1013 e1007 (2016).

    CAS  PubMed  Google Scholar 

  160. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

    CAS  PubMed  Google Scholar 

  162. Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P. & Huibregtse, J. M. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 6972–6979 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, K. B., Wang, D., Lippard, S. J. & Sharp, P. A. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl Acad. Sci. USA 99, 4239–4244 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ribar, B., Prakash, L. & Prakash, S. ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol. Cell Biol. 27, 3211–3216 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ribar, B., Prakash, L. & Prakash, S. Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol. Cell Biol. 26, 3999–4005 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lommel, L., Bucheli, M. E. & Sweder, K. S. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne’s syndrome. Proc. Natl Acad. Sci. USA 97, 9088–9092 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).

    CAS  PubMed  Google Scholar 

  168. Nakazawa, Y. et al. Ubiquitination of DNA damage-stalled RNAPII promotes transcription-coupled repair. Cell 180, 1228–1244.e1224 (2020).

    CAS  PubMed  Google Scholar 

  169. Nguyen, V. T. et al. In vivo degradation of RNA polymerase II largest subunit triggered by α-amanitin. Nucleic Acids Res. 24, 2924–2929 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mitsui, A. & Sharp, P. A. Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc. Natl Acad. Sci. USA 96, 6054–6059 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Anindya, R., Aygun, O. & Svejstrup, J. Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not cockayne syndrome proteins or BRCA1. Mol. Cell 28, 386–397 (2007).

    CAS  PubMed  Google Scholar 

  172. Poli, J. et al. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev. 30, 337–354 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kuehner, J. N., Kaufman, J. W. & Moore, C. Stimulation of RNA polymerase II ubiquitination and degradation by yeast mRNA 3’-end processing factors is a conserved DNA damage response in eukaryotes. DNA Repair 57, 151–160 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Luo, Z., Zheng, J., Lu, Y. & Bregman, D. B. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486, 259–274 (2001).

    CAS  PubMed  Google Scholar 

  175. Somesh, B. P. et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121, 913–923 (2005).

    CAS  PubMed  Google Scholar 

  176. Lafon, A. et al. INO80 chromatin remodeler facilitates release of RNA polymerase II from chromatin for ubiquitin-mediated proteasomal degradation. Mol. Cell 60, 784–796 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Verma, R., Oania, R., Fang, R., Smith, G. T. & Deshaies, R. J. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 41, 82–92 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    PubMed  PubMed Central  Google Scholar 

  179. Cortazar, M. A. et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “sitting duck torpedo” mechanism. Mol. Cell 76, 896–908.e894 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Eaton, J. D., Francis, L., Davidson, L. & West, S. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. Genes Dev. 34, 132–145 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Dubbury, S. J., Boutz, P. L. & Sharp, P. A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564, 141–145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang, Y. et al. PAF complex plays novel subunit-specific roles in alternative cleavage and polyadenylation. PLoS Genet. 12, e1005794 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Devany, E. et al. Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov. 2, 16013 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311–324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Elrod, N. D. et al. The integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell 76, 738–752 e737 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Tatomer, D. C. et al. The integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 33, 1525–1538 (2019). Elrod et al. (2019) and Tatomer et al. (2019) provide evidence that the Integrator RNA cleavage complex mediates premature termination of promoter-proximal Pol II pausing, thereby attenuating transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Henriques, T. et al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell 52, 517–528 (2013).

    CAS  PubMed  Google Scholar 

  190. Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. Shao, W. & Zeitlinger, J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 49, 1045–1051 (2017).

    CAS  PubMed  Google Scholar 

  192. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    CAS  PubMed  Google Scholar 

  193. Lai, F., Gardini, A., Zhang, A. & Shiekhattar, R. Integrator mediates the biogenesis of enhancer RNAs. Nature 525, 399–403 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Stadelmayer, B. et al. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat. Commun. 5, 5531 (2014).

    CAS  PubMed  Google Scholar 

  195. Yamamoto, J. et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat. Commun. 5, 4263 (2014).

    CAS  PubMed  Google Scholar 

  196. Beckedorff, F. et al. The human integrator complex facilitates transcriptional elongation by endonucleolytic cleavage of nascent transcripts. Cell Rep. 32, 107917 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Preprint at bioRxiv https://doi.org/10.1101/2020.07.17.208702 (2020).

    Article  Google Scholar 

  198. Vervoort, S. J. et al. A PP2A-Integrator complex fine-tunes transcription by opposing CDK9. Preprint at bioRxiv https://doi.org/10.1101/2020.07.12.199372 (2020).

    Article  Google Scholar 

  199. Huang, K. L. et al. Integrator recruits protein phosphatase 2A to prevent pause release and facilitate transcription termination. Mol. Cell https://doi.org/10.1016/j.molcel.2020.08.016 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Eaton, J. D. et al. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 32, 127–139 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Mischo, H. E. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Alzu, A. et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151, 835–846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Li, W., Selvam, K., Rahman, S. A. & Li, S. Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. Nucleic Acids Res. 44, 6794–6802 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Han, Z. et al. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1. EMBO J. 39, e101548 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    CAS  PubMed  Google Scholar 

  206. Garcia-Muse, T. & Aguilera, A. R loops: from physiological to pathological roles. Cell 179, 604–618 (2019).

    CAS  PubMed  Google Scholar 

  207. Lai, F., Damle, S. S., Ling, K. K. & Rigo, F. Directed RNase H cleavage of nascent transcripts causes transcription termination. Mol. Cell 77, 1032–1043 e1034 (2020).

    CAS  PubMed  Google Scholar 

  208. Lee, J. S. & Mendell, J. T. Antisense-mediated transcript knockdown triggers premature transcription termination. Mol. Cell 77, 1044–1054 e1043 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  Google Scholar 

  210. Crickard, J. B., Fu, J. & Reese, J. C. Biochemical analysis of yeast suppressor of Ty 4/5 (Spt4/5) reveals the importance of nucleic acid interactions in the prevention of RNA polymerase II arrest. J. Biol. Chem. 291, 9853–9870 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhu, W. et al. DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation. Nucleic Acids Res. 35, 4064–4075 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Dutta, A. et al. Ccr4-Not and TFIIS function cooperatively to rescue arrested RNA polymerase II. Mol. Cell Biol. 35, 1915–1925 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kim, J., Guermah, M. & Roeder, R. G. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140, 491–503 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Schweikhard, V. et al. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proc. Natl Acad. Sci. USA 111, 6642–6647 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Swanson, M. S., Malone, E. A. & Winston, F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell Biol. 11, 4286 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Bernecky, C., Plitzko, J. M. & Cramer, P. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Nat. Struct. Mol. Biol. 24, 809–815 (2017).

    CAS  PubMed  Google Scholar 

  217. Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. Structure of transcribing mammalian RNA polymerase II. Nature 529, 551–554 (2016).

    CAS  PubMed  Google Scholar 

  218. Rondon, A. G., Garcia-Rubio, M., Gonzalez-Barrera, S. & Aguilera, A. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22, 612–620 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Guo, S. et al. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature 408, 366–369 (2000).

    CAS  PubMed  Google Scholar 

  220. Andrulis, E. D., Guzman, E., Doring, P., Werner, J. & Lis, J. T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635–2649 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Kaplan, C. D., Morris, J. R., Wu, C. & Winston, F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14, 2623–2634 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Shetty, A. et al. Spt5 plays vital roles in the control of sense and antisense transcription elongation. Mol. Cell 66, 77–88 e75 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Baluapuri, A. et al. MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation. Mol. Cell 74, 674–687 e611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Bacon, C. W. & D’Orso, I. CDK9: a signaling hub for transcriptional control. Transcription 10, 57–75 (2019).

    CAS  PubMed  Google Scholar 

  225. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    CAS  PubMed  Google Scholar 

  226. Van Oss, S. B., Cucinotta, C. E. & Arndt, K. M. Emerging insights into the roles of the Paf1 complex in gene regulation. Trends Biochem. Sci. 42, 788–798 (2017).

    PubMed  PubMed Central  Google Scholar 

  227. Basu, S., Nandy, A. & Biswas, D. Keeping RNA polymerase II on the run: functions of MLL fusion partners in transcriptional regulation. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194563 (2020).

    CAS  PubMed  Google Scholar 

  228. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).

    CAS  PubMed  Google Scholar 

  230. Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).

    CAS  PubMed  Google Scholar 

  231. Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S. & Greenleaf, A. L. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc. Natl Acad. Sci. USA 85, 3698–3702 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Nonet, M., Sweetser, D. & Young, R. A. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50, 909–915 (1987).

    CAS  PubMed  Google Scholar 

  233. Saldi, T., Cortazar, M. A., Sheridan, R. M. & Bentley, D. L. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J. Mol. Biol. 428, 2623–2635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  Google Scholar 

  235. Mayfield, J. E., Burkholder, N. T. & Zhang, Y. J. Dephosphorylating eukaryotic RNA polymerase II. Biochim. Biophys. Acta 1864, 372–387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Lee, J. M. & Greenleaf, A. L. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr. 1, 149–167 (1991).

    CAS  PubMed  Google Scholar 

  237. Bartkowiak, B. et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24, 2303–2316 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Greenleaf, A. L. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium. Transcription 10, 91–110 (2019).

    CAS  PubMed  Google Scholar 

  239. Krajewska, M. et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat. Commun. 10, 1757 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Fan, Z. et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci. Adv. 6, eaaz5041 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Svejstrup laboratory for helpful comments and suggestions, and especially L. Gregersen and A. Tufegdzic Vidakovic for their critical reading of the manuscript. The authors apologize to those authors whose work could not be cited due to space constraints. M.N.G was supported by an EMBO Postdoctoral Fellowship (EMBO ALTF 2020-260).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jesper Q. Svejstrup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

General transcription factors

Transcription factors that are recruited to the promoter during transcription initiation and are necessary for the formation of the pre-initiation complex.

Pre-initiation complexes

(PICs). Complexes of general transcription factors and RNA polymerase II that assemble at gene promoters during transcription initiation.

Transcription pausing

Transient series of Pol II stalling events, followed by resumption of transcription.

Processive

Refers to the extent to which RNA polymerase II performs consecutive nucleotide incorporations and forward translocation without dissociating from the DNA.

Promoter-proximal pausing

Widespread, regulatory stalling of RNA polymerase II in animal cells shortly downstream of transcription start sites.

Transcription arrest

Blocking of transcript elongation by RNA polymerase II by an unsurmountable obstacle.

Genome instability

A cellular genotoxic state that may include changes in DNA sequence and/or chromosomal rearrangements.

Transcription stalling

The point at which forward translocation by RNA polymerase II is blocked, leading to secondary events that include backtracking, arrest or transcription resumption.

Transcription stress

Collective term for events in which RNA polymerase II becomes stalled or arrested during transcript elongation.

Premature termination

Termination of transcription anywhere between the transcription start site and the canonical polyadenylation site, by means of RNA cleavage and RNA polymerase II dissociation.

R-loop

Three-stranded RNA–DNA hybrid structure formed by hybridization of nascent RNA to the DNA strand from which it was transcribed.

Transcription start site

The DNA base position that is complimentary to the first incorporated RNA nucleoside triphosphate.

Pol II C-terminal domain

The highly conserved C-terminal domain (CTD) of RBP1, the catalytic subunit of RNA polymerase II (Pol II). Post-translational modification of the CTD is an important mechanism of transcription regulation.

Core promoter elements

Consensus DNA sequences located at gene promoters which direct the assembly of the pre-initiation complex and transcription initiation.

Nucleosome dyad

Central position within the nucleosome structure, at which a twofold topological symmetry is exhibited.

SHL

Superhelical locations on the nucleosome structure, spaced by approximately 10 bp. SHL(0) marks the nucleosome dyad.

Transcription readthrough

Continuation of transcription beyond (downstream) of canonical termination regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noe Gonzalez, M., Blears, D. & Svejstrup, J.Q. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 22, 3–21 (2021). https://doi.org/10.1038/s41580-020-00308-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-00308-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing