Skip to main content

Advertisement

Log in

Monitoring peptide tyrosine nitration by spectroscopic methods

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Oxidative stress can lead to various derivatives of the tyrosine residue in peptides and proteins. A typical product is 3-nitro-L-tyrosine residue (Nit), which can affect protein behavior during neurodegenerative processes, such as those associated with Alzheimer's and Parkinson's diseases. Surface enhanced Raman spectroscopy (SERS) is a technique with potential for detecting peptides and their metabolic products at very low concentrations. To explore the applicability to Nit, we use SERS to monitor tyrosine nitration in Met-Enkephalin, rev-Prion protein, and α-synuclein models. Useful nitration indicators were the intensity ratio of two tyrosine marker bands at 825 and 870 cm−1 and a bending vibration of the nitro group. During the SERS measurement, a conversion of nitrotyrosine to azobenzene containing peptides was observed. The interpretation of the spectra has been based on density functional theory (DFT) simulations. The CAM-B3LYP and ωB97XD functionals were found to be most suitable for modeling the measured data. The secondary structure of the α-synuclein models was monitored by electronic and vibrational circular dichroism (ECD and VCD) spectroscopies and modeled by molecular dynamics (MD) simulations. The results suggest that the nitration in these peptides has a limited effect on the secondary structure, but may trigger their aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

Bn:

Benzyl

CCT:

Cartesian coordinate-based tensor transfer method

CPCM:

Conductor-like polarizable continuum model

DFT:

Density functional theory

DIC:

N,N′-Diisopropylcarbodiimide

DMF:

N,N-Dimethylmethanamide

ECD:

Electronic circular dichroism

EDT:

1,2-Ethanedithiol

ESI:

Electrospray ionization

Fmoc:

9-Fluorenylmethoxycarbonyl

FWHH:

Full width (of a spectral peak) at half height

GSH :

Glutathione

HF:

Hartree Fock

HOBt:

N-Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

IR :

Infrared absorption

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

Nit:

3-Nitro-L-tyrosine

PDB id.:

Four letter identification code of a structure deposited in the RCSB Protein Data Bank

PTM:

Posttranslational modification

ROA:

Raman optical activity

SERS:

Surface-enhanced Raman spectroscopy

tBu:

tert-Butyl

TEM :

Transmission electron microscopy

TFA:

Trifluoroacetic acid

TOF:

Time of flight (detection)

TIS:

Triisopropyl silane

VCD:

Vibrational circular dichroism

References

  • Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: Selectivity, physicochemical and biological consequences, dinitration and proteomic methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238

    CAS  PubMed  Google Scholar 

  • Alvarez-Puebla RA, Contreras-Caceres R, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM (2009) Au@pNIPAM colloids as a molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 48(1):138–143

    CAS  Google Scholar 

  • Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    CAS  PubMed  Google Scholar 

  • Aslan M, Dogan S (2011) Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 74(11):2274–2288

    CAS  PubMed  Google Scholar 

  • Barron LD (2012) From cosmic chirality to protein structure: Lord Kelvin’s legacy. Chirality 24(11):879–893

    CAS  PubMed  Google Scholar 

  • Barron LD, Buckingham AD (2010) Vibrational optical activity. Chem Phys Lett 492(4–6):199–213

    CAS  Google Scholar 

  • Barron LD, Hecht L, Blanch EW, Bell AF (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog Biophys Mol Biol 73(1):1–49

    CAS  PubMed  Google Scholar 

  • Barron LD, Hecht L, McColl IH, Blanch EW (2004) Raman optical activity comes of age. Mol Phys 102(8):731–744

    CAS  Google Scholar 

  • Barron LD, Zhu F, Hecht L (2006) Raman optical activity: An incisive probe of chirality, and of biomolecular structure and behaviour. Vib Spectrosc 42(1):15–24

    CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  • Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21(2):330–334

    CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620–1624

    CAS  PubMed  Google Scholar 

  • Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16(6):2224–2239

    CAS  PubMed  Google Scholar 

  • Bodanszky M, Bodanszky A (1994) The practice of peptide synthesis. Springer, Berlin, p 48

    Google Scholar 

  • Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121(8):3405–3416

    CAS  PubMed  Google Scholar 

  • Bouř P, Keiderling TA (2002) Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. J Chem Phys 117(9):4126–4132

    Google Scholar 

  • Bouř P, Sopková J, Bednarová L, Maloň P, Keiderling TA (1997) Transfer of molecular property tensors in cartesian coordinates: a new algorithm for simulation of vibrational spectra. J Comput Chem 18(5):646–659

    Google Scholar 

  • Burai R, Ait-Bouziad N, Chiki A, Lashuel HA (2015) Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J Am Chem Soc 137(15):5041–5052

    CAS  PubMed  Google Scholar 

  • Campolo N, Issoglio FM, Estrin DA, Bartesaghi S, Radi R (2020) 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem 64(1):111–133

    CAS  PubMed  Google Scholar 

  • Case DA et al (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  • Castro L, Demicheli V, Tortora V, Radi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45(1):37–52

    CAS  PubMed  Google Scholar 

  • Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    CAS  PubMed  Google Scholar 

  • Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Ab Initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 252(3–4):211–220

    CAS  Google Scholar 

  • Cho FH, Kuo SC, Lai YH (2017) Surface-plasmon-induced azo coupling reaction between nitro compounds on dendritic silver monitored by surface-enhanced Raman spectroscopy. RSC Adv 7(17):10259–10265

    CAS  Google Scholar 

  • Di Bello C, Griffin JH (1975) Circular dichroism and absorbance properties of nitrotyrosyl chromophores in staphylococcal nuclease and in a model diketopiperazine. J Biol Chem 250:1445–1450

    PubMed  Google Scholar 

  • Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157(5):1439–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson BW, Merrifield RB (1973) Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of O-benzyltyrosine to 3-benzyltyrosine. J Am Chem Soc 95(11):3750–3756

    CAS  PubMed  Google Scholar 

  • Feeney MB, Schöneich Ch (2013) Proteomic approaches to analyze protein tyrosine nitration. Antioxid Redox Signal 19(11):1247–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Prot Res 35(3):161–214

    CAS  Google Scholar 

  • Frisch MJ et al (2016) Gaussian 16 revision A.03. Gaussian, Inc., Wallingford CT

    Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    CAS  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM-Y (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    CAS  PubMed  Google Scholar 

  • Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551

    CAS  PubMed  Google Scholar 

  • Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085–7107

    CAS  PubMed  Google Scholar 

  • Gurry T, Ullman O, Fisher CK, Perovic I, Pochapsky T, Stultz CM (2013) The dynamic structure of α-synuclein multimers. J Am Chem Soc 135(10):3865–3872

    CAS  PubMed  Google Scholar 

  • Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132(27):9244–9246

    CAS  PubMed  Google Scholar 

  • Hudecová J, Horníček J, Buděšínský M, Šebestík J, Šafařík M, Zhang G, Keiderling TA, Bouř P (2012) Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment. Chem Phys Chem 13(11):2748–2760

    PubMed  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298(2):431–437

    CAS  PubMed  Google Scholar 

  • Izzo GE, Jordan F, Mendelsohn R (1982) Resonance Raman and 500-MHz 1H NMR Studies of tyrosine modification in hen egg white lysozyme. J Am Chem Soc 104(11):3178–3182

    CAS  Google Scholar 

  • Ježek J, Hlaváček J, Šebestík J (2017) Applications for treatment of neurodegenerative diseases. Prog Drug Res 72:99–134

    Google Scholar 

  • Jing H, Zhang Q, Large N, Yu C, Blom DA, Nordlander P, Wang H (2014) Tunable plasmonic nanoparticles with catalytically active high-index facets. Nano Lett 14(6):3674–3682

    CAS  PubMed  Google Scholar 

  • Keiderling TA (2020) Structure of condensed phase peptides: insights from vibrational circular dichroism and raman optical activity techniques. Chem Rev 120(7):3381–3419

    CAS  PubMed  Google Scholar 

  • Keiderling TA, Lakhani A (2018) Mini review: Instrumentation for vibrational circular dichroism spetroscopy, still a role for dispersive instruments. Chirality 30(3):238–253

    CAS  PubMed  Google Scholar 

  • Kessler J, Andrushchenko V, Kapitán J, Bouř P (2018) Insight into vibrational circular dichroism of proteins by density functional modeling. Phys Chem Chem Phys 20:4926–4935

    CAS  PubMed  Google Scholar 

  • Klamt A, Schürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans A 2(5):799–805

    Google Scholar 

  • Kleinman SL, Frontiera RR, Henry AI, Dieringer JA, Van Duyne RP (2013) Creating, characterizing and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15(1):21–36

    CAS  PubMed  Google Scholar 

  • Krajnik M, Schäfer M, Sobanski P, Kowalewski J, Bloch-Boguslawska E, Zylicz Z, Mousa SA (2010) Enkephalin, its precursor, processing enzymes, and receptor as part of a local opioid network throughout the respiratory system of lung cancer patients. Human Pathol 41(5):632–642

    CAS  Google Scholar 

  • Kurouski D, Van Duyne RP (2015) In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal Chem 87(5):2901–2906

    CAS  PubMed  Google Scholar 

  • Kurouski D, Lee H, Roschangar F, Senanayake Ch (2017) Surface-enhanced raman spectroscopy: from concept to practical application. Spectroscopy 32(11):36–44

    CAS  Google Scholar 

  • Lakhani A, Malon P, Keiderling TA (2009) Comparison of vibrational circular dichroism instruments: development of a new dispersive VCD. Appl Spect 63(7):775–785

    CAS  Google Scholar 

  • Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40(6):790–798

    CAS  PubMed  Google Scholar 

  • Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727

    CAS  Google Scholar 

  • Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    CAS  PubMed  Google Scholar 

  • Martins VR, Beraldo FH, Hajj GN, Lopes MH, Lee KS, Linden PMAR (2010) Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 12(2):63–86

    CAS  PubMed  Google Scholar 

  • Martinsson E, Shahjamali MM, Large N, Zaraee N, Schatz GC, Aili D, Mirkin CA (2015) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12(3):330–342

    PubMed  Google Scholar 

  • Meade RM, Fairlie DP, Mason JM (2019) Alpha-synuclein structure and Parkinson’s disease—lessons and emerging principles. Mol Neurodegener 14:1

    CAS  Google Scholar 

  • Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84(2):322–325

    Google Scholar 

  • Mulvihill MJ, Ling XY, Henzie J, Yang P (2010) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132(1):268–274

    CAS  PubMed  Google Scholar 

  • Niederhafner P, Šafařík M, Brichtová E, Šebestík J (2016) Rapid acidolysis of benzyl group as a suitable approach for synthesis of peptides naturally produced by oxidative stress and containing 3-nitrotyrosine. Amino Acids 48(4):1087–1098

    CAS  PubMed  Google Scholar 

  • Niederhafner P, Šafařík M, Brichtová E, Šebestík J (2019) Correction to: Rapid acidolysis of benzyl group as a suitable approach for syntheses of peptides naturally produced by oxidative stress and containing 3-nitrotyrosine. Amino Acids 51(10–12):1689–1690

    CAS  PubMed  Google Scholar 

  • Niederhafner P, Brichtová E, Šafařík M, Keiderling TA, Šebestík J (2019b) The role of tyrosine oxidation in structures and properties of neurodegenerative peptides and proteins. In Peptide Science 2018: Proceedings of the 10th International Peptide Symposium/The 55th Japanese Peptide Symposium. Shiroh Futaki and Katsumi Matsuzaki (Eds), The Japanese Peptide Society, Kyoto, pp 59–60

  • Novák V, Šebestík J, Bouř P (2012) Theoretical modeling of the surface-enhanced Raman optical activity. J Chem Theory Comput 8(5):1714–1720

    PubMed  Google Scholar 

  • Novák V, Dendisová M, Matějka P, Bouř P (2016) Explanation of surface-enhanced raman scattering intensities of p-aminobenzenethiol by density functional computations. J Phys Chem C 120(32):18275–18280

    Google Scholar 

  • Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating of structure, function and toxicity of alpha-synuclein. Implications for Parkinson’s disease pathogenesis and therapies. Progress Brain Res 183(C):115–145

    CAS  Google Scholar 

  • Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533–16539

    CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  PubMed  Google Scholar 

  • Quaroni L, Smith WE (1999a) Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering. Biospectroscopy 5:S71–S76

    CAS  PubMed  Google Scholar 

  • Quaroni L, Smith WE (1999b) The Nitro Stretch as a Probe of the Environment of Nitrophenols and Nitrotyrosines. J Raman Spectrosc 30(7):537–542

    CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101(12):4003–4008

    CAS  PubMed  Google Scholar 

  • Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559

    CAS  PubMed  Google Scholar 

  • Rahmelow K, Hübner W, Ackermann Th (1998) Infrared absorbances of protein side chains. Anal Biochem 257(1):1–11

    CAS  PubMed  Google Scholar 

  • Rehor I, Cigler P (2014) Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam Relat Mater 46:21–24

    CAS  Google Scholar 

  • Reynolds MR, Berry RW, Binder LI (2005) Site specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer’s disease. Biochemistry 44(5):1690–1700

    CAS  PubMed  Google Scholar 

  • Ruud K, Thorvaldsen AJ (2009) Theoretical approaches to the calculation of raman optical activity spectra. Chirality 21:E54–E67

    CAS  PubMed  Google Scholar 

  • Rycenga M, Langille MR, Personick ML, Ozel T, Mirkin CA (2012) Chemically isolating hot spots on concave nanocubes. Nano Lett 12(12):6218–6222

    CAS  PubMed  Google Scholar 

  • Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44(8):1061–1076

    CAS  Google Scholar 

  • Seballos L, Richards N, Stevens DJ, Patel M, Kapitzky L, Lokey S, Millhauser G, Zhang JZ (2007) Competitive binding effects on surface-enhanced Raman scattering of peptide molecules. Chem Phys Lett 447(4–6):335–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Šebestík J, Bouř P (2011) Raman optical activity of methyloxirane gas and liquid. J Phys Chem Lett 2(5):498–502

    Google Scholar 

  • Šebestík J, Šafařík M, Bouř P (2012) Ferric complexes of 3-hydroxy-4-pyridinones characterized by density functional theory and Raman and UV-vis spectroscopies. Inorg Chem 51(8):4473–4481

    PubMed  Google Scholar 

  • Shao Z, Zhu W, Wang H, Yang Q, Yang S, Liu X, Wang G (2013) Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance. J Phys Chem C 117(27):14289–14294

    CAS  Google Scholar 

  • Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP (2012) SERS: Material, applications and the future. Mater Today 15(1–2):16–25

    CAS  Google Scholar 

  • Soum E, Brazzolotto X, Goussias C, Bouton C, Moulis J-M, Mattioli TA, Drapier J-C (2003) Peroxynitrite and nitric oxide differently target the iron-sulfur cluster and amino acid residues of human iron regulatory protein 1. Biochemistry 42(25):7648–7654

    CAS  PubMed  Google Scholar 

  • Stamplecoskie KG, Scaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J Phys Chem C 115(5):1403–1409

    CAS  Google Scholar 

  • Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced raman spectroscopy. Ann Rev Anal Chem 1(1):601–626

    CAS  Google Scholar 

  • Stuart ChM, Frontiera RR, Mathies RA (2007) Excited-State structure and dynamics of cis- and trans-azobenzene from resonance Raman intensity analysis. J Phys Chem A 111(48):12072–12080

    CAS  PubMed  Google Scholar 

  • Sun M, Xu H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18):2777–2786

    CAS  PubMed  Google Scholar 

  • Taylor RW, Lee TC, Scherman OA, Esteban R, Aizpurua J, Huang FM, Baumberg JJ, Mahajan S (2011) Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n]uril “glue.” ACS Nano 5(5):3878–3887

    CAS  PubMed  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    CAS  PubMed  Google Scholar 

  • Tsikas D, Duncan MW (2014) Mass spectrometry and 3-nitrotyrosine: Strategies, controversies, and our current perspective. Mass Spectrom Rev 33(4):237–276

    CAS  PubMed  Google Scholar 

  • Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36(4):307–319

    CAS  Google Scholar 

  • Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle bound human alpha-synuclein. J Biol Chem 280:9595–9603

    CAS  PubMed  Google Scholar 

  • Valim LR, Davis JA, Jensen KT, Guo R, Willison KR, Spickett CM, Pitt AR, Klug DR (2014) Identification and relative quantification of tyrosine nitration in a model peptide using two-dimensional infrared spectroscopy. J Phys Chem B 118(45):12855–12864

    Google Scholar 

  • Vana L, Kanaan NM, Hakala K, Weintraub ST, Binder LI (2011) Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 50(7):1203–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venyaminov SYu, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) Solutions. I. spectral parameters of amino acid residue absorption bands. Biopolymers 30(13–14):1243–1257

    CAS  PubMed  Google Scholar 

  • Woody AY, Woody RW (2003) Individual tyrosine side-chain contributions to circular dichroism of ribonuclease. Biopolymers 72(6):500–513

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Bouř P (2013) Transition polarizability model of induced resonance Raman optical activity. J Comput Chem 34(25):2152–2158

    CAS  PubMed  Google Scholar 

  • Yamashiro D, Li CH (1973) Adrenocorticotropins 44 Total synthesis of the human hormone by the solid-phase method. J Am Chem Soc 95(4):1310–1315

    CAS  PubMed  Google Scholar 

  • Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  • Yttenberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73(11):2249–2266

    Google Scholar 

  • Zahn R, Liu A, Lührs T, Riek R, von Schroetter Ch, García FL, Billeter M, Calzolai L, Wider G, Wüthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97(1):145–150

    CAS  PubMed  Google Scholar 

  • Zhang Q, Large N, Nordlander P, Wang H (2014) Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J Phys Chem Lett 5(2):370–374

    CAS  PubMed  Google Scholar 

  • Zhang Q, Large N, Wang H (2014) Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl Mater Interf 6(19):17255–17267

    CAS  Google Scholar 

  • Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241

    CAS  Google Scholar 

  • Zhao Y, Zhang Y, Sun H, Maroto R, Brasier AR (2017) Selective affinity enrichment of nitrotyrosine-containing peptides for quantitative analysis in complex samples. J Proteome Res 16(8):2983–2992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wu J, Yang Z, Ouyang L, Zhu L, Gao Z, Hailing Li (2019) Nitration of hIAPP promotes its toxic oligomer formation and exacerbates its toxicity towards INS-1 cells. Nitric Oxide 87:23–30

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (14-00431S, 17-00121S, 20-10144S), Research Project RVO 61388963, by European Regional Development Fund; OP RDE; Project: "Chemical biology for drugging undruggable targets (ChemBioDrug)" (No. CZ.02.1.01/0.0/0.0/16_019/0000729), and computational grants of CESNET (LM2015042) and the CERIT-SC (LM2015085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Šebestík.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Human participants or animals

This paper does not contain any studies with human participants or animals performed by any of the authors. For this type of study formal consent is not required.

Additional information

Handling editor: D. Tsikas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (doc 2786 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niederhafner, P., Šafařík, M., Neburková, J. et al. Monitoring peptide tyrosine nitration by spectroscopic methods. Amino Acids 53, 517–532 (2021). https://doi.org/10.1007/s00726-020-02911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-020-02911-7

Keywords

Navigation