Skip to main content
Log in

Panel Flutter of a Variable-Thickness Composite Shell

  • Published:
Mechanics of Composite Materials Aims and scope

Systems of equations are obtained to study the onset of panel flutter of a composite shell with a linearly varying thickness. Using a model developed, the critical flow-over speed, corresponding to the onset of flutter, as a function of thickness difference between the left and right ends of the shell is calculated for various values of the axial compressive force and shell length with and without considering its structural damping. The discrepancy between the critical flow-over speed calculated for the shell and a shell with the corresponding integrally average constant thickness is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. V. N. Bakulin, I. F. Obraztsov, and V. A. Potopakhin, Dynamic Problems of the Nonlinear Theory of Multilayered Shells: Action of Intensive Loads and Concentrated Energy Streams [in Russian], M., Fizmatlit (1998).

  2. A. A. Smerdov, F. T. Shon, “An analysis of the efficiency of optimum composite shells multiwall and sandwich shells for the compartments of rockets-carriers and acceleration blocks // Konstr. Kompoz. Mater., 143, No. 3, 58-65 (2016).

    Google Scholar 

  3. A. S. Vol’mir, Shells in Liquid and Gas Streams. Aeroelasticity Problems [in Russian], M., Fizmatlit (1976).

  4. P. M. Ogibalov and M. A. Koltunov, Shells and Plates [in Russian], M., Izd. MGU (1976).

  5. S. D. Algazin and I. A. Kiiko, Flutter of Plates and Shells [in Russian], M., Nauka (2006).

  6. E. I. Starovoitov, D. V. Leonenko, and L. N. Rabinskiy, “Natural vibrations of a composite cylindrical shell with an elastic filler,” Composites: Mechanics, Computations, Applications, 7, No 2, 119-133 (2016).

    Google Scholar 

  7. V. N. Bakulin and S. L. Snesarev, “Eigenvibrations of cylindrical shells with a rectangular cut-out.”Izv. Vuz.: Aviats. Tekhn., No. 4, 3-6 (1988).

    Google Scholar 

  8. E. I. Starovojtov and D. V. Leonenko, “Rezonance vibrations of a sandwich cylindrical shell with an elastic filler,” Mekh. Kompoz. Mater. Konstr., 22, No. 1, 60-68 (2016).

    Google Scholar 

  9. V. N. Bakulin and D. A. Mysyk, “To calculation of sandwich shells with a variable thickness of filler,” Mekh. Kompoz. Mater. No. 5, 933-935 (1980).

    Google Scholar 

  10. V. N. Bakulin, “Research into the stress-strain state of sandwich shells at the action of radial loads distributed nonuniformly on an annular area,” Probl. Prochn., No. 5, 78-81 (1985).

    Google Scholar 

  11. V. N. Paimushin and S. V. Andreev, “Equations of the nonlinear theory of sandwich shells with layers of variable thickness at arbitrary motions,” Mezhvuz. Sb. Nauch. Rabot: Prikl. Probl. Mekh. Obolochek, Kazan, 63-76 (1989).

  12. V. N. Bakulin and A. V. Ostrik, “The combined thermal and mechanical effect of radiation and shock waves on a multilayer orthotropic shell with a heterogeneous coating,” J. Appl. Math. Mech., 78, No. 2, 155-162 (2014).

    Article  Google Scholar 

  13. K. S. Kolesnikov, A. V. Ostrik, V. N. Bakulin, and V. V. Yemelyanov, “Metod of numerical modelling of non-stationary deformation of multilayered nonuniformly heated shells of variable thickness,” Sb. Tr. Vseros. Mezhdunar. Nauch. Konf. (to the 100th anniversary of the academician V. V.Struminskii), Moscow, April, 28-30, 2014, М., IPRIM RAN, 97-111 (2014).

  14. A. P. Erkov and A. A. Dudchenko, “On the stability of plates of variable rigidity,” Tr.. MAI, No. 103 (2018).

  15. L. S. Golbraikh, R. R. Mavljutov, L. D. Rapoport, and F. Kh. Khusainov, “Axisymmetric radial vibrations of an anisotropic cylindrical shell of variable thickness,” Mekh. Tverd. Deform. Tela, Raschet Konstr., Tashkent, Fan, 50-55 (1981).

  16. V. V. Ershov and A. D. Kretov, “To the determination of eigenfrequencies of a cylindrical shell with a variable thickness,” Prikl. Mekh., 13, No. 2, 21-25 (1977).

    Google Scholar 

  17. A. A. Brynza, D. D. Rabotyagov, and I. S. Deryabin, “On vibrations of an orthotropic cylindrical shell of variable thickness in an elastic medium,” Izv. Vuzov, Stroit. Arkhitektura, No. 4, 38-41 (1981).

    Google Scholar 

  18. V. A. Krys’ko and T. V. Shchekaturova, “Vibrations of conic axisymmetric shell of variable thickness,” Probl. Prochn. Mater. Konstr. Transport. Mater VI Mezhdunar. Nauch. Konf. S.-Peterburg Gos. Univ. Putei Soobshch., 222-233 (2004).

  19. F. Zhou, Z. Chen, H. Fan, and S. Huang, “Analytical study on the buckling of cylindrical shells with stepwise variable thickness subjected to uniform external pressure,” Mech. Adv. Materials Struct., 23, No. 10, 1207-1215 (2016).

    Article  Google Scholar 

  20. V. N. Bakulin, A. Ya. Nedbaj, and I. O. Shepeleva, “Dynamic stability of an orthotropic cylindrical shell of piecewise constant thickness at the action of an external pulsing pressure,” Izv. Vuzov, Aviats. Tekhn., No. 2, 19-25 (2019).

    Google Scholar 

  21. Yu. S. Solomonov, V. P. Georgievskii, A. Ya. Nedbai, and V. A. Andryushin, “Applied Problem of the Mechanics of Cylindrical Composite Shells [in Russian], M., Fizmatlit (2014).

  22. V. N. Bakulin, E. N. Volkov, and A. Ya. Nedbai, “Dynamic stability of a cylindrical shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces,” J. Eng. Phys. Thermophys., 89, No. 3, 747-753 (2016).

    Article  Google Scholar 

  23. V. N. Bakulin, E. N. Volkov, and A. I. Simonov, “Dynamic stability of a cylindrical shell under alternating axial external pressure,” Russian Aeronautics., 60, No. 4, 508-513 (2017).

    Article  Google Scholar 

  24. V. N. Bakulin, E. V. Danilkin, and A. Ya. Nedbai, “Dynamic stability of a cylindrical shell stiffened with a cylinder and longitudinal diaphragms at external pressure,” J. Eng. Phys. Thermophys., 91, No. 2, 537-543 (2018).

    Article  Google Scholar 

  25. V. V Vedeneyev, “Nonlinear high-frequency flutter of plates,” Izv. RAN, Mekh. Zhidk. Gaza., No. 5, 197-208 (2007).

    Google Scholar 

  26. S. A. Bochkaryov and S. V. Lekomtsev, “Investigation of panel flutter of circular cylindrical shells of a functionally gradient material,” Vesti PNIPU, Mekhanika, No. 1, 57-75 (2014).

    Google Scholar 

  27. V. N. Bakulin, E. N. Volkov, and A. Ya. Nedbai, “Flutter of a sandwich cylindrical shell supported with annular ribs and loaded with axial forces,” Dokl. Phys., 60, No. 8, 360-363 (2015).

    Article  CAS  Google Scholar 

  28. V. N. Bakulin, M. A. Bokov and A. Ya. Nedbai, “Aeroelastic stability of a cylindrical composite shell at a bilaterial flow,” Mech. Compos. Mater., 53, No. 6, 801-808 (2017).

    Article  Google Scholar 

  29. V. N. Bakulin, M. A. Konopel’chev, and A. Ya. Nedbai, “Flutter of a laminated cantilever cylindrical shell with a ringstiffened edge,” Russian Aeronautics., 61, No. 4, 517-523 (2018).

    Article  Google Scholar 

  30. V. G. Moskvin, “Stability of a circular cylindrical shell of a linear viscoelastic material in a supersonic stream of gas,” Tr. 8 Vsesoyz. Konf. Theorii Obolochek Plastin, M., Nauk (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bakulin.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 5, pp. 919-932, September-October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, V.N., Konopelchev, M.A. & Nedbai, A.Y. Panel Flutter of a Variable-Thickness Composite Shell. Mech Compos Mater 56, 629–638 (2020). https://doi.org/10.1007/s11029-020-09909-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09909-y

Keywords

Navigation