Skip to main content

Advertisement

Log in

Deciphering role of inter and intracity human dispersal on epidemic spread via coupled reaction-diffusion models

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Human mobility has been significantly influencing public health since time immemorial. A susceptible-infected-deceased epidemic reaction diffusion network model using asymptotic transmission rate is proposed to portray the spatial spread of the epidemic among two cities due to population dispersion. Qualitative behaviour including global attractor and persistence property are obtained. We also study asymptotic behaviour of the whole network with the help of asymptotic behaviour at individual cities. The epidemic model shows up two equilibria, (i) the disease-free, and (ii) unique endemic equilibria. An expression that can be used to calculate the basic reproduction number for heterogeneous environment, for the entire network is obtained. We use graph theory to analyze the global stability of our diffusive two-city model. We also performed bifurcation analysis and discovered that endemic equilibrium changes stability via Hopf bifurcations. A significant reduction in the number of infectives were observed when proper migration rate is maintained between the cities. Numerical results are provided to illuminate and clarify theoretical findings. Simulation experiments for two-dimensional spatial models show that infectious populations will increase if contact heterogeneity is increased, but it will decline if infective populations perform more local random movement. We observe that infection risk may be understated if the parameters used to estimate the basic reproduction number remains unchanged through space or time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen, L.J., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21(1), 1 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, R.M., May, R.: Infectious Diseases of Humans. Oxford Science Publication Google Scholar, New York (1991)

    Google Scholar 

  3. Arino, J., Van den Driessche, P.: A multi-city epidemic model. Math. Popul. Stud. 10(3), 175–193 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, vol. 9. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  5. Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in L1. J. Math. Soc. Jpn. 25(4), 565–590 (1973)

    MATH  Google Scholar 

  6. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462 (2006)

    Google Scholar 

  7. Chen, W., Wang, M.: Qualitative analysis of predator-prey models with Beddington-Deangelis functional response and diffusion. Math. Comput. Modell. 42(1–2), 31–44 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Cui, R., Lou, Y.: A spatial sis model in advective heterogeneous environments. J. Differ. Equ. 261(6), 3305–3343 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Deng, K., Wu, Y.: Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model. Proc. Sect. A Math. R. Soc. Edinb. 146(5), 929 (2016)

  10. Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29(6), 539–570 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems, vol. 28. Springer, Berlin (2013)

    MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  13. Guin, L.N., Mandal, P.K.: Spatiotemporal dynamics of reaction-diffusion models of interacting populations. Appl. Math. Model. 38(17–18), 4417–4427 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Hethcote, H.W.: Qualitative analyses of communicable disease models. Math. Biosci. 28(3–4), 335–356 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Huang, W., Han, M., Liu, K.: Dynamics of an sis reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng. 7(1), 51 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Jorgensen, S.E.: Handbook of Environmental Data and Ecological Parameters, vol. 6. Pergamon, Bergama (1979)

    Google Scholar 

  18. Keeling, M., Rohani, P.: Modeling infectious diseases in humans and animals. Clin. Infect. Dis. 47, 864–6 (2008)

    MATH  Google Scholar 

  19. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1. Pearson Education, Chennai (2011)

  20. Krein, M.G.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Transl. Ser. I(10), 199–325 (1962)

    Google Scholar 

  21. Kuto, K., Matsuzawa, H., Peng, R.: Concentration profile of endemic equilibrium of a reaction-diffusion-advection sis epidemic model. Calc. Var. Partial. Differ. Equ. 56(4), 112 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2013)

    Google Scholar 

  23. Lam, K.Y., Lou, Y.: Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications. J. Dyn. Differ. Equ. 28(1), 29–48 (2016)

    MathSciNet  MATH  Google Scholar 

  24. LaSalle, J.P.: The Stability of Dynamical Systems, vol. 25. SIAM, Philadelphia (1976)

    MATH  Google Scholar 

  25. Lei, C., Li, F., Liu, J.: Theoretical analysis on a diffusive sir epidemic model with nonlinear incidence in a heterogeneous environment. Discrete Contin. Dyn. Syst.-B 23(10), 4499 (2018)

  26. Lei, C., Xiong, J., Zhou, X.: Qualitative Analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete Contin. Dyn. Syst.-B 22(11), 1 (2019)

  27. Li, B., Bie, Q.: Long-time dynamics of an sirs reaction-diffusion epidemic model. J. Math. Anal. Appl. 475(2), 1910–1926 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Li, M.Y., Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 248(1), 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Li, B., Li, H., Tong, Y.: Analysis on a diffusive sis epidemic model with logistic source. Zeitschrift für angewandte Mathematik und Physik 68(4), 96 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Li, H., Peng, R., Wang, F.B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive sis epidemic model. J. Differ. Equ. 262(2), 885–913 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Li, H., Peng, R., Wang, Z.A.: On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78(4), 2129–2153 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Lieberman, G.M.: Bounds for the steady-state sel’kov model for arbitrary p in any number of dimensions. SIAM J. Math. Anal. 36(5), 1400–1406 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Z., Wang, X., Wang, M.: Inhomogeneity of epidemic spreading. Chaos Interdiscip. J. Nonlinear Sci. 20(2), 023128 (2010)

    Google Scholar 

  34. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Magal, P., Webb, G., Wu, Y.: On a vector-host epidemic model with spatial structure. Nonlinearity 31(12), 5589 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Magal, P., Webb, G.F., Wu, Y.: On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 79(1), 284–304 (2019)

    MathSciNet  MATH  Google Scholar 

  37. May, R.M.: Uses and abuses of mathematics in biology. Science 303(5659), 790–793 (2004)

    Google Scholar 

  38. McCallum, H., Barlow, N., Hone, J.: How should pathogen transmission be modelled? Trends Ecol. Evol. 16(6), 295–300 (2001)

    Google Scholar 

  39. Murray, JD.: Mathematical biology II: spatial models and biomedical applications, 3,(2001) Springer-Verlag

  40. Nian, F., Wang, X.: Efficient immunization strategies on complex networks. J. Theor. Biol. 264(1), 77–83 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Nian, F., Hu, C., Yao, S., Wang, L., Wang, X.: An immunization based on node activity. Chaos Solitons Fractals 107, 228–233 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Peng, R.: Asymptotic profiles of the positive steady state for an sis epidemic reaction-diffusion model. Part I. J. Differ. Equ. 247(4), 1096–1119 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an sis epidemic reaction-diffusion model: effects of epidemic risk and population movement. Physica D 259, 8–25 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Peng, R., Zhao, X.Q.: A reaction-diffusion sis epidemic model in a time-periodic environment. Nonlinearity 25(5), 1451 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (2012)

    MATH  Google Scholar 

  46. Ren, G., Wang, X.: Epidemic spreading in time-varying community networks. Chaos Interdiscip. J. Nonlinear Sci. 24(2), 023116 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Song, P., Lou, Y., Xiao, Y.: A spatial SEIRS reaction-diffusion model in heterogeneous environment. J. Differ. Eq. 267, 5084–5114 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, Hoboken (2007)

    Google Scholar 

  49. Stürchler, D., et al.: Endemic Areas of Tropical Infections, 2nd edn. Hans Huber Publishers, Saint Paul (1988)

    Google Scholar 

  50. Suo, J., Li, B.: Analysis on a diffusive sis epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment. Math. Biosci. Eng. 17(1), 418–441 (2020)

    MathSciNet  Google Scholar 

  51. Tewa, J.J., Bowong, S., Mewoli, B.: Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis. Appl. Math. Model. 36(6), 2466–2485 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70(1), 188–211 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Tong, Y., Lei, C.: An sis epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment. Nonlinear Anal. Real World Appl. 41, 443–460 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Upadhyay, R.K., Roy, P., Rai, V.: Deciphering dynamics of epidemic spread: the case of influenza virus. Int. J. Bifurc. Chaos 24(05), 1450064 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Wang, W., Zhao, X.Q.: An epidemic model in a patchy environment. Math. Biosci. 190(1), 97–112 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Wang, W., Zhao, X.Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71(1), 147–168 (2011)

    MathSciNet  MATH  Google Scholar 

  58. Wang, W., Zhao, X.Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Wang, X., Zhao, T.: Model for multi-messages spreading over complex networks considering the relationship between messages. Commun. Nonlinear Sci. Numer. Simul. 48, 63–69 (2017)

    MATH  Google Scholar 

  60. Wang, X., Zhao, T., Qin, X.: Model of epidemic control based on quarantine and message delivery. Physica A 458, 168–178 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Wen, X., Ji, J., Li, B.: Asymptotic profiles of the endemic equilibrium to a diffusive sis epidemic model with mass action infection mechanism. J. Math. Anal. Appl. 458(1), 715–729 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Wen-Jie, Z., Xing-Yuan, W.: Inhomogeneity of epidemic spreading with entropy-based infected clusters. Chaos Interdiscip. J. Nonlinear Sci. 23(4), 043105 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive sis epidemic model with mass action infection mechanism. J. Differ. Equ. 261(8), 4424–4447 (2016)

    MathSciNet  MATH  Google Scholar 

  64. Xu, Z., Ai, C.: Traveling waves in a diffusive influenza epidemic model with vaccination. Appl. Math. Model. 40(15–16), 7265–7280 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Normandie region France and XTerm ERDF project (European Regional Development Fund) on Complex Network and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimita Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 5

We consider the following auxiliary system

$$\begin{aligned} -D_{S_1} \nabla ^2 S_1= & {} (\theta r_1(x)+(1-\theta ) r_{10}) S_1 \left( 1-\frac{S_1+I_1}{K_1}\right) \nonumber \\&-\frac{(\theta \beta _1(x)-(1-\theta )\beta _{10}) S_1 I_1}{S_1+I_1+c_1}, \end{aligned}$$
(74)
$$\begin{aligned} -D_{I_1} \nabla ^2 I_1= & {} \frac{(\theta \beta _1(x)-(1-\theta )\beta _{10}) S_1 I_1}{S_1+I_1+c_1}-(\theta a_1(x)-(1-\theta )a_{10}) I_1, \nonumber \\ \frac{\partial S_1}{\partial \nu }= & {} \frac{\partial I_1}{\partial \nu }=0. \end{aligned}$$
(75)

where \(r_{10}, \beta _{10}, a_{10}\) are positive constant and the parameter \(\theta \in [0,1]\). Problem (7475) becomes problem (47) at \(\theta =1\). We divide the proof into three parts for easy understanding.

Step 1. We find the upper bounds for any positive solution \((S_1,I_1)\) to (7475). In view of (74), it holds

$$\begin{aligned} \int _{\varOmega }S_1 dx\le K_1 ~~~\text {and}~~~ \int _{\varOmega }I_1 dx \le K_1. \end{aligned}$$
(76)

Thus, we can find a positive constant C independent of \(\theta \in [0,1]\) such that

$$\begin{aligned} (\theta r_1(x)+(1-\theta ) r_{10}) S_1 \left( 1-\frac{S_1+I_1}{K_1}\right) \le max(max ~~r_1(x),r_{10})\int _{\varOmega }S_1 dx \le C \end{aligned}$$

and

$$\begin{aligned} (\theta \beta _1(x)+(1-\theta ) \beta _{10}) \frac{S_1 I_1}{S_1+I_1+c_1} \le max(max~~\beta _1(x),\beta _{10})\int _{\varOmega }I_1 dx \le C \end{aligned}$$

The positive constant C does not depend on the parameter \(\theta \in [0,1]\) and can be different depending on its position. Applying \(L^1\) estimate theory for elliptic equations [5] to Equ. (7475), we obtain \(||S_1||_{W^{1,1({\varOmega })}} \le C\) and \(||I_1||_{W^{1,1({\varOmega })}} \le C\). Application of Sobolev embedding theorem gives us,

$$\begin{aligned} W^{1,1({\varOmega })} \rightarrow L^p({\varOmega }),~~~ \forall 1\le p \le \frac{n}{n-1}~~\text {or}~~1\le p<\infty ~~\text {if}~~n=1. \end{aligned}$$

we have

$$\begin{aligned} ||S_1||_{L^p({\varOmega })},||I_1||_{L^p({\varOmega })}\le C, ~~~ \forall 1\le p \le \frac{n}{n-1}~~\text {or}~~1\le p<\infty ~~\text {if}~~n=1. \end{aligned}$$
(77)

Applying \(L^p\) estimate for elliptic equations [12] to (7475) leads to

$$\begin{aligned}&||S_1||_{W^{2,p}({\varOmega })},||I_1||_{W^{2,p}({\varOmega })} \le C, \nonumber \\&\quad \forall 1\le p \le \frac{n}{n-1}~~\text {or}~~1\le p<\infty ~~\text {if}~~n=1. \end{aligned}$$
(78)

Again we apply Sobolev embedding theorem, to get

$$\begin{aligned}&||S_1||_{L^{p^*}({\varOmega })},||I_1||_{L^{p^*}({\varOmega })}\le C, \nonumber \\&\quad \forall 1\le p^* \le \frac{n}{n-3}~~\text {or}~~1\le p^*<\infty ~~\text {if}~~n=1. \end{aligned}$$
(79)

Repeating the above process finitely many times, one can affirm that

$$\begin{aligned} ||S_1||_{L^\infty ({\varOmega })}\le C, ||I_1||_{L^\infty ({\varOmega })}\le C. \end{aligned}$$
(80)

Step 2. Now, we find lower bounds for any positive solution \((S_1,I_1)\) to (7475). Integrating (75) over \({\varOmega }\) gives

$$\begin{aligned} \int _{\varOmega }[\theta \beta (x)+(1-\theta )\beta _{10}] \frac{S_1 I_1}{S_1+I_1+c_1} dx=\int _{\varOmega }[\theta a(x)+(1-\theta ) a_{10}]I_1 dx, \end{aligned}$$
(81)

Clearly, (81) indicates

$$\begin{aligned} c \int _{\varOmega }I_1 dx\le d \int _{\varOmega }S_1 dx, \end{aligned}$$
(82)

where \(c=min(min~~a(x), a_{10})>0, d=max(max ~\beta (x), \beta _{10})>0\). One can then insert \(\int _{\varOmega }I_1 dx \le K_1-\int _{\varOmega }S_1 dx\) into (82) to get

$$\begin{aligned} \int S_1 dx \ge \frac{cK_1}{c+d}. \end{aligned}$$
(83)

Notice that \(S_1\) satisfies

$$\begin{aligned} {-\nabla ^2 S_1+\frac{1}{D_{S_1}}max ({max~~\beta _1(x),\beta _{10}})S_1>0, \forall x \in {\varOmega }}. \end{aligned}$$
(84)

Thus, together with (83) and Lemma 1 with \(q=1\) concludes that

$$\begin{aligned} S_1(x) \ge C, \forall x \in {\varOmega }. \end{aligned}$$
(85)

We next take \(min_{\varOmega }I_1(x)=I(x_0)\). According to [34], one can see

$$\begin{aligned} \frac{[\theta \beta _1(x_0)+(1-\theta )\beta _{10}]S_1(x_0)}{S_1(x_0)+I_1(x_0)+c_1} \le \theta a_1(x)+(1-\theta ) a_{10}. \end{aligned}$$
(86)

This leads to

$$\begin{aligned} min_{{\bar{{\varOmega }}}} I_1(x)=I_1(x_0)\ge \frac{min(min_{{\bar{{\varOmega }}}}~~\beta _1(x),\beta _{10}) S_1(x_0)}{max(max_{{\bar{{\varOmega }}}}~~a_1(x),a_{10}))}-c_1-S_1(x_0) \ge C. \end{aligned}$$
(87)

If \(\beta _1(x_0) S_1(x_0)/a_1(x_0)-c_1-S_1(x_0)>0\), from the above analysis of step 1 and 2 we can always find a positive constant \(C_*>1\), which is independent of \(\theta \in [0,1]\), such that any positive solution \((S_1,I_1)\) of (7475) satisfies

$$\begin{aligned} \frac{1}{C^*}<S_1(x), I_1(x)<C_*, \forall x \in {\bar{{\varOmega }}} \end{aligned}$$
(88)

Step 3. Finally, we find existence of positive solution to (7475). Let us denote a set,

$$\begin{aligned} {\varTheta }=\{(S_1,I_1) \in C({\bar{{\varOmega }}}) \times C({\bar{{\varOmega }}}): \frac{1}{C^*}<S_1(x), I_1(x)<C_*, \} \end{aligned}$$
(89)

Thus, (7475) has no positive solution \((S_1,I_1)\in \partial {\varTheta }\). For \(\theta \in [0,1],\) we also define the operator

$$\begin{aligned} H(\theta ,(S_1,I_1))= & {} (-\nabla ^2 +I)^{-1}({\hat{h}} (\theta ,(S_1,I_1)),{\tilde{h}}(\theta ,(S_1,I_1))), \end{aligned}$$
(90)
$$\begin{aligned} {\hat{h}}= & {} S+D_{S_1}^{-1}\left( (\theta r_1(x)+(1-\theta r_{10})) S_1 \left( 1-\frac{S_1+I_1}{K_1}\right) \right. \nonumber \\&\qquad \qquad \left. -\frac{(\theta \beta _1(x)-(1-\theta )\beta _1(x)) S_1 I_1}{S_1+I_1+c_1} \right) ,\nonumber \\ {\tilde{h}}= & {} I+D_{I_1}^{-1} \nonumber \\&\left( \frac{(\theta \beta _1(x)-(1-\theta )) S_1 I_1}{S_1+I_1+c_1}-(\theta a_1(x)-(1-\theta ) a_{10}) I_1 \right) , \end{aligned}$$
(91)

Clearly, the existence of positive solutions of (47) is identical to the existence of fixed point of the operator H(1, .) in \({\varTheta }\). From standard elliptic regularity theory one can find that H is a compact operator from \([0,1] \times {\varTheta }\) to \(C({{\bar{{\varOmega }}}}) \times C({\bar{{\varOmega }}})\). Furthermore, we have

$$\begin{aligned} (S_1,I_1) \ne H(\theta ,(S_1,I_1)), \forall \theta \in [0,1] ~~ \text {and}~~(S_1,I_1)\in \partial {\varTheta }. \end{aligned}$$

Therefore, the topological degree \(deg(I-H(\theta ,.),{\varTheta })\) is well-defined and is independent of \(\theta \in [0,1]\). Denote

$$\begin{aligned} S_{10}^*= & {} \frac{a_1(\sqrt{B}+(c_1 r_1+K_1(a_1-\beta _1+r_1)))}{2 \beta _1 r_1} \\ I_{10}^*= & {} \frac{-(a_1-\beta _1)^2 K_1-(\beta _1(c_1-K_1)+a_1(c_1+K_1))r_1+\sqrt{(a_1-\beta _1)^2 B}}{2 \beta _1 r_1} \end{aligned}$$

where \(B=(a_1-\beta _1)K_1^2+2K_1(\beta _1(c_1-K_1)+a_1(c_1+K_1))r_1+(c_1+K_1)^2 r_1^2\). [54] have already proved that \((S_{10}^*,I_{10}^*)\) is linearly stable when \(\beta _1(x), r_1(x), a_1(x)\) are constant. Using well-known Leray-Schauder degree index formula, we have

$$\begin{aligned} deg(I-H(0,.), {\varTheta })=index(I-H(0,.),(S_{10}^*,I_{10}^*))=1. \end{aligned}$$

Therefore, from homotopy invariance of the Leray-Schauder degree it follows that

$$\begin{aligned} deg(I-H(1,.),{\varTheta })=deg(I-H(0,.), {\varTheta })=1, \end{aligned}$$

which implies that H(1, .) has at least one fixed point in \({\varTheta }\). As a consequence, (47) has at least one positive solution. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz-Alaoui, M.A., Roy, P. Deciphering role of inter and intracity human dispersal on epidemic spread via coupled reaction-diffusion models. J. Appl. Math. Comput. 66, 769–808 (2021). https://doi.org/10.1007/s12190-020-01450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01450-4

Keywords

Mathematics Subject Classification

Navigation