Skip to main content
Log in

The Magnetoelectric Effect in Ferroelectric/Ferromagnetic Film Hybrid Systems with Easy-Plane and Easy-Axis Anisotropy

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The striction magnetoelectric effect in hybrid systems consisting of a magnetic film applied on the surface of a ferroelectric has been investigated. Films with planar (galfenol, nickel) and perpendicular (Co/Pt multilayer structures) magnetic anisotropy have been used. A PMN–PT crystal has served as ferroelectric. The hysteresis loops of magnetic films have been studied as a function of voltage applied to the ferroelectric crystal. A voltage applied to films with easy-plane anisotropy causes the anisotropy axis to turn in the plane of the sample. In structures with easy-axis anisotropy, the hysteresis shape changes, which, according to numerical simulation, may be associated with a change in interfacial Dzyaloshinsky–Moriya interaction at the Co/Pt interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P.-L. Yang, D. Hao, and R. Ramesh, Nano Lett. 7, 1586 (2007).

    Article  ADS  Google Scholar 

  2. S. Sahoo, S. Polisetty, C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, and C. Binek, Phys. Rev. B 76, 092108 (2007).

    Article  ADS  Google Scholar 

  3. T. Brintlinger, S.-H. Lim, K. H. Baloch, P. Alexander, Y. Qi, J. Barry, J. Melngailis, L. Salamanca-Riba, I. Takeuchi, and J. Cumings, Nano Lett. 10, 1219 (2010).

    Article  ADS  Google Scholar 

  4. J.-M. Hu, T. Yang, J. Wang, H. Huang, J. Zhang, L.-Q. Chen, and C.-W. Nan, Nano Lett. 15, 616 (2015).

    Article  ADS  Google Scholar 

  5. M. Liu, Z. Zhou, T. Nan, B. M. Howe, G. J. Brown, and N. X. Sun, Adv. Mater. 25, 1435 (2013).

    Article  Google Scholar 

  6. S. Zhang, Y. G. Zhao, P. S. Li, J. J. Yang, S. Rizwan, J. X. Zhang, J. Seidel, T. L. Qu, Y. J. Yang, Z. L. Luo, Q. He, T. Zou, Q. P. Chen, J. W. Wang, L. F. Yang, et al., Phys. Rev. Lett. 108, 137203 (2012).

    Article  ADS  Google Scholar 

  7. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett. 96, 207204 (2006).

    Article  ADS  Google Scholar 

  8. L. O. Mair, L. J. Martinez-Miranda, L. K. Kurihara, A. Nacev, R. Hilaman, S. Chowdhury, S. Jafari, S. Ijanaten, C. da Silva, J. Baker-McKee, P. Y. Stepanov, and I. N. Weinberg, AIP Adv. 8, 056731 (2018).

    Article  ADS  Google Scholar 

  9. G. P. Carman, J. Fontcuberta, K. Hono, and T. Ono, IEEE Trans. Magn. 51 (12), 1 (2015). https://doi.org/10.1109/TMAG.2015.2481538

    Article  Google Scholar 

  10. Ce-Wen Nan, Phys. Rev. B 50, 6082 (1994).

    Article  ADS  Google Scholar 

  11. N. S. Gusev, I. Yu. Pashen’kin, O. G. Udalov, M. V. Sapozhnikov, and P. A. Yunin, Tech. Phys. 64 (11), 1646 (2019). https://doi.org/10.1134/S1063784219110148

    Article  Google Scholar 

  12. B. Peng, Z. Zhou, T. Nan, G. Dong, M. Feng, Q. Yang, X. Wang,  S. Zhao,  D. Xian,  Z.-D. Jiang,  W. Ren, Z.-G. Ye, N. X. Sun, and M. Liu, ACS Nano 11, 4337 (2017).

    Article  Google Scholar 

  13. C. Thiele, K. Dorr, O. Bilani, J. Rodel, and L. Schultz, Phys. Rev. B 75, 054408 (2007).

    Article  ADS  Google Scholar 

  14. P. M. Leufke, R. Kruk, R. A. Brand, and H. Hahn, Phys. Rev. B 87, 094416 (2013).

    Article  ADS  Google Scholar 

  15. H. Lu, T. A. George, Y. Wang, I. Ketsman, J. D. Burton, C.-W. Bark, S. Ryu, D. J. Kim, J. Wang, C. Binek, P. A. Dowben, A. Sokolov, C.-B. Eom, E. Y. Tsymbal, and A. Gruverman, Appl. Phys. Lett. 100, 232904 (2012).

    Article  ADS  Google Scholar 

  16. N. S. Gusev, M. V. Sapozhnikov, A. V. Sadovnikov, S. A. Nikitov, and O. G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).

  17. H. Sohn, M. E. Nowakowski, C. Y. Liang, J. L. Hockel, K. Wetzlar, S. Keller, B. M. McLellan, M. A. Marcus, A. Doran, A. Young, M. Klauli, G. P. Carman, J. Bokor, and R. N. Candler, ACS Nano 9, 4814 (2015).

    Article  Google Scholar 

  18. J.-M. Hu, C.-W. Nan, and L.-Q. Chen, Phys. Rev. B 83, 134408 (2011).

    Article  ADS  Google Scholar 

  19. T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S.-M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, Nano Lett. 18, 4871 (2018). https://doi.org/10.1021/acs.nanolett.8b01502

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 18-42-520013R_A) and Russian Science Foundation (grant no. 18-72-10026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Gusev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, N.S., Sapozhnikov, M.V., Udalov, O.G. et al. The Magnetoelectric Effect in Ferroelectric/Ferromagnetic Film Hybrid Systems with Easy-Plane and Easy-Axis Anisotropy. Tech. Phys. 65, 1832–1836 (2020). https://doi.org/10.1134/S1063784220110158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110158

Navigation