Skip to main content
Log in

Modification and Polishing of the Holographic Diffraction Grating Grooves by a Neutralized Ar Ion Beam

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We describe the method for increasing the efficiency of holographic diffraction gratings (HDGs) intended for operation in the X-ray wavelength range. We describe the procedure of processing of HDG surface for reducing the amplitude and roughness of grooves. For reducing the groove amplitude, we have used Xe ions with an energy of 600 eV, while ion polishing was performed with Ar ions having an energy of 800 eV. It is shown that, after ion polishing, the diffraction efficiency of the grating at a wavelength of 4.47 nm increases by almost four times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. M. Gullikson, J. H. Underwood, P. C. Batson, and V. Nikitin, J. X-Ray Sci. Technol. 3 (4), 283 (1992).

    Article  Google Scholar 

  2. L. van Loyen, T. Boettger, S. Braun, H. Mai, A. Leson, F. Scholze, J. Tuemmler, G. Ulm, H. Legall, P. V. Nickles, W. Sandner, H. Stiel, C. E. Rempel, M. Schulze, J. Brutscher, et al., Proc. SPIE 5038 (11) (2003). https://doi.org/10.1117/12.485042

  3. A. Miyake, T. Miyachi, M. Amemiya, T. Hasegawa, N. Ogushi, T. Yamamoto, F. Masaki, and Y. Watanabe, Proc. SPIE 5037, 647 (2003).

    Article  ADS  Google Scholar 

  4. H. Wanga, X. Wanga, B. Chena, Y. Wanga, S. Maoa, S. Rena, P. Zhoua, Y. Liua, T. Huob, and H. Zhoub, Optik 204, 164213 (2020).

    Article  ADS  Google Scholar 

  5. F. Scholze, T. Bottger, H. Enkisch, C. Laubis, L. Loyen, F. Macco, and S. Schadlich, Meas. Sci. Technol. 18, 126 (2007).

    Article  ADS  Google Scholar 

  6. E. A. Vishnyakov, A. O. Kolesnikov, A. A. Kuzin, D.  V.  Negrov, E. N. Ragozin, P. V. Sasorov, and A. N. Shatokhin, Quantum Electron. 47 (1), 54 (2017). https://doi.org/10.1070/QEL16261

    Article  ADS  Google Scholar 

  7. M. Czerny and A. F. Turner, Z. Phys. 61, 792 (1930). https://doi.org/10.1007/BF01340206

    Article  ADS  Google Scholar 

  8. S. A. Garakhin, I. G. Zabrodin, S. E. Zuev, I. A. Kas’kov, A. Ya. Lopatin, A. N. Nechay, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, and N. I. Chkhalo, Quantum Electron. 47 (4), 385 (2017). https://doi.org/10.1070/QEL16300

    Article  ADS  Google Scholar 

  9. https://shvabe.com/upload/iblock/df0/DO-GDR-O.pdf.

  10. M. V. Zorina, S. Yu. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, Tech. Phys. Lett. 42 (8), (2016). https://doi.org/10.1134/S1063785016080319

  11. N. I. Chkhalo, N. N. Salashchenko, and M. V. Zorina, Rev. Sci. Instrum. 86, 016102 (2015).

    Article  ADS  Google Scholar 

  12. E. Ziegler, L. Peverini, N. Vaxelaire, A. Cordon-Rodriguez, A. Rommeveaux, I. V. Kozhevnikov, and J. Susini, Nucl. Instrum. Methods Phys. Res., Sect. A 616 (2–3), 188 (2010). https://doi.org/10.1016/j.nima.2009.12.062

    Article  Google Scholar 

  13. S. Chen, S. Li, X. Peng, H. Hu, and G. Tie, Appl. Opt. 54 (6), 1478 (2015). https://doi.org/10.1364/AO.54.001478

    Article  ADS  Google Scholar 

  14. N. I. Chkhalo, S. A. Churin, M. S. Mikhaylenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and M. V. Zorina, Appl. Opt. 55, 6 (2016).

    Article  Google Scholar 

  15. N. I. Chkhalo, S. A. Churin, A. E. Pestov, N. N. Salashchenko, Y. A. Vainer, and M. V. Zorina, Opt. Express 22, 20094 (2014).

    Article  ADS  Google Scholar 

  16. N. I. Chkhalo, A. V. Kirsanov, G. A. Luchinin, O. A. Malshakova, M. S. Mikhailenko, A. I. Pavlikov, A. E. Pestov, and M. V. Zorina, Appl. Opt. 57 (24), 6911 (2018).

    Article  ADS  Google Scholar 

  17. N. I. Chkhalo, M. S. Mikhailenko, A. V. Mil’kov, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, I. L. Strulya, M. V. Zorina, and S. Yu. Zuev, Surf. Coat. Technol. 311, 351 (2017).

    Article  Google Scholar 

  18. N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, M. S. Mikhaylenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and I. G. Zabrodin, Precis. Eng. 48, 338 (2017). https://doi.org/10.1016/j.precisioneng.2017.01.004

    Article  Google Scholar 

  19. M. S. Bibishkin, D. P. Chehonadskih, N. I. Chkhalo, E. B. Kluyenkov, A. E. Pestov, N. N. Salashchenko, L. A. Shmaenok, I. G. Zabrodin, and S. Yu. Zuev, Proc. SPIE 5401, 8 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed in the framework of state order no. 0035-2014-0204 and was supported by the Russian Foundation for Basic Research, projects nos. 20-02-00708, 19-32-90154, 18-02-00588, and 18-07-00633. The research was carried out on the equipment of the Physics and Technology of Micro- and Nanostructures Center for Collective Use at the Institute for Physics of Microstructures, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Garakhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garakhin, S.A., Zorina, M.V., Zuev, S.Y. et al. Modification and Polishing of the Holographic Diffraction Grating Grooves by a Neutralized Ar Ion Beam. Tech. Phys. 65, 1780–1785 (2020). https://doi.org/10.1134/S1063784220110110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110110

Navigation