Skip to main content
Log in

Optimization of an Anode Membrane with a Transmission-Type Target in a System of Soft X-Ray Sources for X-Ray Nanolithography

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for optimizing the design and composition of the anode membrane with a transmission-type target as part of a system of soft X-ray sources based on field-emission triodes for performing tasks in the field of X-ray nanolithography. It allows to prevent the degradation of the operating characteristics of the system when significant electrostatic deformation of the anode occurs under the influence of a control electric field in the inter-electrode space of the triodes. For this purpose, the inclusion of an additional control electrode in the system design is considered, which makes it possible to compensate for the deformation of the anode membrane to an acceptable level and thereby stabilize the operation of X-ray sources. A numerical model of the electrostatic deflection of the anode assembly in a modified design is developed, based on which the optimal composition and geometric parameters of the anode membrane with a compensating electrode are determined. In particular, the optimal distance between the anode membrane in the initial (undeformed) state and the compensating electrode was found (equal to 5 μm), at which a minimum voltage difference (about 1.15 kV) should be applied to these electrodes to prevent critical deflection of the membrane (0.72 μm with a membrane radius of 750 µm). It is also shown that, due to their extremely high hardness (>80 GPa), diamond-like films are the most promising material for the anode electrode. The results obtained can also be useful for the development of miniature X-ray generation devices for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J.-W. Han, M.-L. Seol, D.-I. Moon, G. Hunter, and M. Meyyappan, Nat. Electron. 2, 405 (2019). https://doi.org/10.1038/s41928-019-0289-z

    Article  Google Scholar 

  2. M. Liu, T. Li, and Y. Wang, J. Vac. Sci. Technol., B 35, 031801 (2017). https://doi.org/10.1116/1.4979049

    Article  Google Scholar 

  3. Y. Huang, Z. Deng, W. Wang, C. Liang, J. She, S. Deng, and N. Xu, Sci. Rep. 5, 10631 (2015). https://doi.org/10.1038/srep10631

    Article  ADS  Google Scholar 

  4. S. A. Guerrera and A. I. Akinwande, Nanotechnology 27, 295302 (2016). https://doi.org/10.1088/0957-4484/27/29/295302

    Article  Google Scholar 

  5. P. Zhang and Y. Y. Lau, J. Plasma Phys. 82 (5), 595820505 (2016). https://doi.org/10.1017/S002237781600091X

    Article  Google Scholar 

  6. W.-T. Chang, H.-J. Hsu, and P.-H. Pao, Micromachines 10, 858 (2019). https://doi.org/10.3390/mi10120858

    Article  Google Scholar 

  7. J.-W. Han, D.-I. Moon, and M. Meyyappan, Nano Lett. 17, 2146 (2017). https://doi.org/10.1021/acs.nanolett.6b04363

    Article  ADS  Google Scholar 

  8. J. Xu, Z. Gu, W. Yang, Q. Wang, and X. Zhang, Nanoscale Res. Lett. 13, 311 (2018). https://doi.org/10.1186/s11671-018-2736-6

    Article  ADS  Google Scholar 

  9. M. Liu, Y. Lei, Y. Yang, T. Li, and Y. Wang, Proc. Int. Conf. Manipulation, Automation and Robotics at Small Scales (Helsinki, Finland, 2019), Vol. 1. https://doi.org/10.1109/marss.2019.8860991

  10. N. A. Djuzhev, G. D. Demin, T. A. Gryazneva, V. Yu. Kireev, and D. V. Novikov, IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (Moscow, Russia, 2018), p. 1974. https://doi.org/10.1109/EIConRus.2018.8317498

  11. N. Egorov and E. Sheshin, Field Emission Electronics (Springer, 2017), Vol. 60. https://doi.org/10.1007/978-3-319-56561-3

  12. E. M. Sebastian, S. K. Jain, R. Purohit, S. K. Dhakad, and R. S. Rana, Mater. Today (in press). https://doi.org/10.1016/j.matpr.2020.02.505

  13. N. I. Chkhalo, A. Ya. Lopatin, A. E. Pestov, N. N. Salashchenko, G. D. Demin, N. A. Dyuzhev, and M. A. Makhiboroda, Proc. SPIE 11022, 110221M (2018). https://doi.org/10.1117/12.2522105

    Article  Google Scholar 

  14. C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, Appl. Surf. Sci. 425, 553 (2017). https://doi.org/10.1016/j.apsusc.2017.07.010

    Article  ADS  Google Scholar 

  15. N. A. Djuzhev, G. D. Demin, T. A. Gryazneva, A. E. Pestov, N. N. Salashchenko, N. I. Chkhalo, and F. A. Pudonin, Bull. Lebedev Phys. Inst. 45 (1), 1 (2018). https://doi.org/10.3103/S1068335618010013

    Article  ADS  Google Scholar 

  16. N. I. Tatarenko and V. F. Kravchenko, Autoemission Nanostructures and Devices Based on Them (Fizmatlit, Moscow, 2006) [in Russion].

    Google Scholar 

  17. N. A. Djuzhev, G. D. Demin, N. A. Filippov, I. D. Evsikov, P. Y. Glagolev, M. A. Makhiboroda, N. I. Chkhalo, N. N. Salashchenko, S. V. Filippov, A. G. Kolosko, E. O. Popov, and V. A. Bespalov, Tech. Phys. 64 (12), 1742 (2019). https://doi.org/10.1134/S1063784219120053

    Article  Google Scholar 

  18. N. N. Salashchenko, N. I. Chkhalo, and N. A. Djuzhev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 944 (2018). https://doi.org/10.1134/S1027451018050324

    Article  Google Scholar 

  19. G. D. Demin, N. A. Djuzhev, N. A. Filippov, P. Yu. Glagolev, I. D. Evsikov, and N. N. Patyukov, J. Vac. Sci. Technol., B 37, 022903 (2019). https://doi.org/10.1116/1.5068688

    Article  Google Scholar 

  20. COMSOL Multiphysics v. 5.5, COMSOL AB (Stockholm, Sweden), https://www.comsol.com/

  21. M. Ding, G. Sha, and A. I. Akinwande, IEEE Trans. Electron Devices 49, 2333 (2002). https://doi.org/10.1109/TED.2002.805230

    Article  ADS  Google Scholar 

  22. R. Hatada, S. Flege, M. N. Ashraf, A. Timmermann, C. Schmid, and W. Ensinger, Coatings 10, 360 (2020). https://doi.org/10.3390/coatings10040360

    Article  Google Scholar 

  23. S. L. Shinde and J. Goela, High Thermal Conductivity Materials (Springer, 2006). ISBN: 9780387251004

    Book  Google Scholar 

Download references

Funding

This work was supported by Russian Federation Presidential Council for Grants (grant no. 075-15-2019-1139) and carried out using the equipment of MIET Core facilities center “MEMS and electronic components” supported by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Glagolev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glagolev, P.Y., Demin, G.D., Oreshkin, G.I. et al. Optimization of an Anode Membrane with a Transmission-Type Target in a System of Soft X-Ray Sources for X-Ray Nanolithography. Tech. Phys. 65, 1709–1716 (2020). https://doi.org/10.1134/S1063784220110122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110122

Navigation