Skip to main content
Log in

Experimental Determination of Mechanical Properties of the Anode Cell of an X-Ray Lithograph

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have prepared the anode cell of an X-ray lithograph in the form of a PolySi/Si3N4/SiO2 membrane structure using group technology. The design of the stand for determining mechanical properties of membranes has been modernized. The critical pressure of a membrane structure with a diameter 250 μm varies in the range from 0.484 to 0.56 MPa for 15 samples. The mechanical strength of the PolySi*/Si3N4/SiO2 structure is 3.13 GPa. The new model in the Comsol package shows good correlation between the experimental critical pressure and the theoretical mechanical strength of the membrane. The distribution of mechanical stresses over the membrane has been obtained by simulation and analytic calculation. It is proved that the structure breaking region is localized at the membrane/substrate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. A. Dyuzhev, G. D. Demin, A. E. Pestov, N. N. Salashchenko, and N. I. Chkhalo, Microelectronics-2019, p. 429.

  2. B. Wu and A. Kumar, Appl. Phys. Rev. 1 (1), 011104 (2014). https://doi.org/10.1063/1.4863412

    Article  ADS  Google Scholar 

  3. N. I. Chkhalo, A. Ya. Lopatin, A. E. Pestov, N. N. Malashchenko, G. D. Demin, N. A. Dyuzhev, and M. A. Makhiboroda, Proc. SPIE 11022, 110221M (2019). https://doi.org/10.1117/12.2522105

    Article  Google Scholar 

  4. V. V. Shpejzman, V. I. Nikolaev, A. O. Pozdnyakov, A. V. Bobyl’, R. B. Timashov, and A. I. Averkin, Tech. Phys. 90 (1), 79 (2020). https://doi.org/10.21883/JTF.2020.01.48665.148-19]

    Article  Google Scholar 

  5. E. E. Gusev, A. V. Borisova, A. A. Dedkova, A. A. Salnikov, and V. Y. Kireev, IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (St. Petersburg–Moscow, Russia, January 28–31, 2019), No. 8657243, pp. 1990–1994. https://doi.org/10.1109/eiconrus.2019.8657243

  6. A. S. Savinykh, G. I. Kanel, and S. V. Razorenov, Tech. Phys. 55 (6), 839 (2010). https://doi.org/10.1134/S1063784210060150

    Article  Google Scholar 

  7. Yu. V. Zhilyaev, S. D. Raevskii, D. Z. Grabko, D. S. Leu, M. E. Kompan, S. A. Yusupova, and M. P. Shcheglov, Tech. Phys. Lett. 31 (5), 367 (2005). https://doi.org/10.1134/1.1931770

    Article  ADS  Google Scholar 

  8. A. I. Vlasov, T.A. Tsivinskaya, and V.A. Shakhnov, Proc. 7th All-Russia Sci. & Technol. Conf. “Problems of Advanced Micro- and Nanoelectronic Systems Development” (MES-2016) (Zelenograd, Russia, October 3–7, 2016). http://www.mes-conference.ru/data/year2016/pdf/D084.pdf.

  9. S. L. Shikunov and V. N. Kurlov, Tech. Phys. 62 (12), 1869 (2017). https://doi.org/10.1134/S1063784217120222

    Article  Google Scholar 

  10. M. G. Mueller, M. Fornabaio, G. Zagar, and A. Mortensen, Acta Mater. 105, 165 (2016). https://doi.org/10.1016/j.actamat.2015.12.006

    Article  Google Scholar 

  11. R. Venkatraman and J. C. Bravman, J. Mater. Res. 7 (8), 2040 (1992). https://doi.org/10.1557/JMR.1992.2040

    Article  ADS  Google Scholar 

  12. T. Tsuchiya, A. Inoue, and J. Sakata, Sens. Actuators, A 82 (1–3), 286 (2000). https://doi.org/10.1016/S0924-4247(99)00363-5

    Article  Google Scholar 

  13. W. N. Sharpe, J. Pulskamp, D. S. Gianola, C. Eberl, R.G. Polcawich, and R. J. Thompson, Exp. Mech. 47, 649 (2007). https://doi.org/10.1007/s11340-006-9010-z

    Article  Google Scholar 

  14. Jinling Yang, A. Gaspar, and O. Paul, J. Microelectromech. Syst. 17 (5), 1120 (2008). https://doi.org/10.1109/JMEMS.2008.928706

    Article  Google Scholar 

  15. K. Petersen, Proc. IEEE 70 (5), 420 (1982).

    Article  ADS  Google Scholar 

  16. Tai-Ran Hsu, MEMS and Microsystems: Design and Manufacture (McGraw-Hill Education, Boston, 2002).

    Google Scholar 

  17. M. Madou, Fundamentals of Microfabrication (Taylor & Francis, London, 1997).

    Google Scholar 

  18. Qing An Huang, Micro Electro Mechanical Systems (Springer, Singapore, 2018).

    Book  Google Scholar 

  19. R. L. Edwards, G. Coles, and W. N. Sharpe, Exp. Mech. 44 (1), 49 (2004). https://doi.org/10.1007/bf02427976

    Article  Google Scholar 

  20. T. Tsuchiya, J. Sakata, and Y. Taga, MRS Online Proc. Libr. 505, 285 (1998). https://doi.org/10.1557/proc-505-285

    Article  Google Scholar 

  21. T. Ozaki, T. Koga, N. Fujitsuka, H. Makino, H. Hohjo, and H. Kadoura, Sens. Actuators, A 278, 48 (2018). https://doi.org/10.1016/j.sna.2018.05.034

    Article  Google Scholar 

  22. R. Vayrette, J.-P. Raskin, and T. Pardoen, Eng. Fract. Mech. 150, 222 (2015).

    Article  Google Scholar 

  23. B. L. Boyce, J. M. Grazier, T. E. Buchheit, and M. J. Shaw, J. Microelectromech. Syst. 16 (2), 179 (2007).

    Article  Google Scholar 

  24. B. Kaiser, C. Drabe, T. Graßhoff, H. Conrad, and H. Schenk, J. Micromech. Microeng. 25 (8), 085003 (2015). https://doi.org/10.1088/0960-1317/25/8/085003

    Article  ADS  Google Scholar 

  25. W. N. Sharpe and J. Bagdahn, Mech. Mater. 36 (1–2), 3 (2004). https://doi.org/10.1016/s0167-6636(03)00027-9

    Article  Google Scholar 

  26. W. N. Sharpe and K. T. Turner, Proc.7th Int. Fatigue Congr. (Fatigue’99), Beijing, China, June 8–12,1999 (Higher Education, Beijing, 1999), pp. 1837–1844.

Download references

Funding

The research work was performed on the equipment of the Microsystem Technology and Electronic Component Base Center for Collective Use of National Research University “MIET” with the support of the Ministry of Education and Science of the Russian Federation, state contract no. 14.581.21.0021, UN RFMEFI58117X0021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Djuzhev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djuzhev, N.A., Gusev, E.E., Dedkova, A.A. et al. Experimental Determination of Mechanical Properties of the Anode Cell of an X-Ray Lithograph. Tech. Phys. 65, 1755–1759 (2020). https://doi.org/10.1134/S1063784220110055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110055

Navigation