Skip to main content
Log in

Deep X-Ray Reflectometry of Supermultiperiod A3B5 Structures with Quantum Wells Grown by Molecular-Beam Epitaxy

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Elastically strained supermultiperiod (100–1000 periods) AlGaAs/GaAs superlattices with different doping levels and slightly differing period thicknesses have been investigated. The proposed technique of characterization consisting of combined application of deep X-ray reflectometry based on a rigorous calculation method, as well as the well-known method of high-resolution X-ray reflectometry, has made it possible to investigate 100-period structures with 2-nm-wide Al0.3Ga0.7As barriers and 10-nm-wide GaAs wells and determine with a high accuracy the layer thicknesses and spread of interfaces. This achievement can be considered as a first step in further analysis of thick structures using bright synchrotron radiation source. The difference between the expected and obtained by the proposed method layer thicknesses is several percent, including that for samples with a high doping level (up to 1018 cm–3). All supermultiperiod structures are characterized by sharp interfaces with a standard deviation of about 0.1 nm. Based on the obtained data on the thicknesses, one can accurately determine the layer compositions using high-resolution X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, Nature 415, 883 (2002). https://doi.org/10.1038/415883a

  2. A. A. Andronov, E. P. Dodin, D. I. Zinchenko, Yu. N. Nozdrin, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, V. A. Belyakov, I. V. Ladenkov, and A. G. Fefelov, JETP Lett. 102 (4), 207 (2015). https://doi.org/10.1134/S0021364015160031

    Article  ADS  Google Scholar 

  3. L. I. Goray, E. V. Pirogov, M. S. Sobolev, I. V. Ilkiv, A. S. Dashkov, Yu. A. Vainer, M. V. Svechnikov, P.  A.  Yunin, N. I. Chkhalo, and A. D. Bouravlev, Semiconductors 53 (14), 1910 (2019). https://doi.org/10.1134/S1063782619140082

    Article  ADS  Google Scholar 

  4. L. I. Goray, E. V. Pirogov, E. V. Nikitina, E. V. Ubyivovk, L. G. Gerchikov, A. N. Ipatov, A. S. Dashkov, M. S. Sobolev, I. V. Ilkiv, and A. D. Bouravlev, Semiconductors 53 (14), 1914 (2019). https://doi.org/10.1134/S1063782619140094

    Article  ADS  Google Scholar 

  5. L. I. Goray, Proc. SPIE 6617, 661719 (2007). https://doi.org/10.1117/12.726038

    Article  Google Scholar 

  6. L. I. Goray, N. I. Chkhalo, and G. E. Tsyrlin, Tech. Phys. 54 (4), 561 (2009). https://doi.org/10.1134/S1063784209040185

    Article  Google Scholar 

  7. L. I. Goray, N. I. Chkhalo, and Yu. A. Vainer, Tech. Phys. Lett. 36 (2), 108 (2010). https://doi.org/10.1134/S1063785010020057

    Article  ADS  Google Scholar 

  8. L. Goray and M. Lubov, Opt. Express 23 (8), 10703 (2015). https://doi.org/10.1364/OE.23.010703

    Article  ADS  Google Scholar 

  9. L.I. Goray and G. Schmidt, Boundary Integral Equation Methods for Conical Diffraction and Short Waves, in Gratings: Theory and Numerical Applications, Ed. by E. Popov, 2nd ed. (Inst. Fresnel, AMU, 2014), pp. 447–536. https://www.fresnel.fr/files/gratings/Second-Edition/index.htm.

  10. L. Goray and M. Lubov, J. Appl. Crystallogr. 46, 926 (2013). https://doi.org/10.1107/S0021889813012387

    Article  Google Scholar 

  11. D. K. G. de Boer, Phys. Rev. B 53, 6048 (1996). https://doi.org/10.1103/PhysRevB.53.6048

    Article  ADS  Google Scholar 

  12. J. A. Ogilvy, Rep. Prog. Phys. 50 (12), 1553 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. V. Kozhevnikov and M. V. Pyatakhin, J. X-Ray Sci. Technol. 8 (4), 253 (2000).

    Google Scholar 

  14. L. I. Goray, J. Appl. Phys. 108, 033516 (2010). https://doi.org/10.1063/1.3467937

    Article  ADS  Google Scholar 

  15. M. Svechnikov, J. Appl. Crystallogr. 53 (1), 244 (2019).

    Article  Google Scholar 

  16. L. Goray and M. Lubov, Opt. Express 23 (8), 10703 (2015). https://doi.org/10.1364/OE.23.010703

    Article  ADS  Google Scholar 

  17. M. Lubov and L. J. Goray, J. Synchrotron Radiat. 26, 1539 (2019). https://doi.org/10.1107/S1600577519006337

    Article  Google Scholar 

  18. Website of I. I. G., Inc., Accessed March 3, 2020.

  19. D. G. Stearns, J. Appl. Phys. 71 (9), 4286 (1992). https://doi.org/10.1063/1.350810

    Article  ADS  Google Scholar 

  20. D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, J. Appl. Phys. 84 (2), 1003 (1998). https://doi.org/10.1063/1.368098

    Article  ADS  Google Scholar 

  21. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988). https://doi.org/10.1103/PhysRevB.38.2297

    Article  ADS  Google Scholar 

  22. Center of X-Ray Optics, http://henke.lbl.gov/optical_constants. Accessed March 3, 2020.

Download references

Funding

This study was supported in part by the Ministry of Science and Higher Education of the Russian Federation (FSRM-2020-0008) and the Russian Foundation for Basic Research (project no. 19-29-12053) in the part concerning experimental investigations. Research by L.I. Goray, E.V. Pirogov, M.S. Sobolev, and A.S. Dashkov was supported by the Russian Science Foundation (project no. 19-12-00270) in the theoretical part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Goray.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goray, L.I., Pirogov, E.V., Sobolev, M.S. et al. Deep X-Ray Reflectometry of Supermultiperiod A3B5 Structures with Quantum Wells Grown by Molecular-Beam Epitaxy. Tech. Phys. 65, 1822–1827 (2020). https://doi.org/10.1134/S1063784220110134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110134

Navigation