Skip to main content
Log in

Disturbance Observers: Methods and Applications. II. Applications

  • nonlinear systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This work is the second part of a survey devoted to disturbance observers that appeared in the theory and practice of automatic control back in the mid-1960s. The first part of the survey was devoted to theoretical results. This part of the survey is devoted to practical application of disturbance observers. We consider such applications as control of ships and underwater vehicles, control of aircraft and robotic manipulators, suppression of narrow-band vibrational oscillations, estimation and suppression of disturbances in electrical systems, control of cars and their component units, and a number of other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In our opinion, \({\hat{v}}_{i\text{eq}}\) is not exactly the equivalent control as defined in [22, 23], since in contrast to the above works, in (2.3) filtration occurs inside a closed control loop and is not external in relation to it.

  2. Lockheed Martin X-33 was designed as an unmanned suborbital space plane to showcase the technologies developed in the 1990s as part of the Spacecraft Launch Initiative funded by the US government. X-33 was a technology demonstration for the VentureStar orbiting spacecraft, which was planned to be a commercial reusable launch vehicle of the next generation.

  3. In fact, this is a variation of the well-known random search algorithms with learning [32].

  4. Note that the notation system of the international standard for flight dynamics ISO 1151 [34] used in [33, 30] and other foreign publications differs from the Russian GOST 20058-80 [35].

  5. In [44], standard equations of quadrocopter dynamics are used with unspoken assumptions regarding the angular motion, in particular the smallness of the roll and pitch angles as well as angular velocities relative to the axes of the associated coordinate system.

  6. TF W1(s) of the form (4.2) differs from that given in [1, Section 3, Eq. (3.2)] in the presence of the multiplier \({\Phi }_{r}^{y}(s)/(1-{\Phi }_{r}^{y}(s))\) in it, which in [1] is represented by the sequential TF of the controller R(s).

References

  1. Andrievskii, B. R. & Furtat, I. B. Disturbance Observers. Methods and Applications. I. Methods, Autom. Remote Control 81(no. 9), 1563–1610 (2020).

    Article  Google Scholar 

  2. Chen, W.-H., Yang, J., Guo, L. & Li, S. Disturbance-Observer-Based Control and Related Methods–An Overview. IEEE T. Ind. Electron. 63(no. 2), 1083–1095 (2016).

    Article  Google Scholar 

  3. Zheng, Q. & Gao, Z. Active Disturbance Rejection Control: Some Recent Experimental and Industrial Case Studies. Control Theor. Technol. 16(no. 4), 301–313 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  4. Jordán, M.A. and Bustamante, J.L.A Speed-Gradient Adaptive Control with State/Disturbance Observer for Autonomous Subaquatic Vehicles, Proc. 45th IEEE Conf. on Decision and Control (CDC 2006), San Diego, USA, Piscataway, USA: IEEE, 2006, 13–15 Dec., pp. 2008–2013.

  5. Fradkov, A. L. A Scheme of Speed Gradient and Its Application in Problems of Adaptive Control. Autom. Remote Control 40(no. 9), 1333–1342 (1979).

    MATH  Google Scholar 

  6. Fomin, V. N., Fradkov, A. L. & Yakubovich, V. A. Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamical Objects). (Nauka, Moscow, 1981).

    MATH  Google Scholar 

  7. Andrievsky, B. R., Stotsky, A. A. & Fradkov, A. L. Velocity Gradient Algorithms in Control and Adaptation. A Survey. Autom. Remote Control 49(no. 12), 1533–1564 (1988).

    Google Scholar 

  8. Miroshnik, I. V., Nikiforov, V. O. & Fradkov, A. L. Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control for Complex Dynamical Systems). (Nauka, St. Petersburg, 2000).

    MATH  Google Scholar 

  9. Andrievsky, B. Speed-Gradient Method in Control Problems for Mobile Mechanical Systems. Math. Eng., Sci. Aerospace 10(no. 4), 617–641 (2019).

    Google Scholar 

  10. Jordán, M.A., Bustamante, J.L., and Pinna-Cortinas, J.M.Design of Adaptive Control Systems for ROVs Using Inverse Dynamics and State/Disturbance Observation, Proc. 6th Argentine Symp. Computing Technology (ASSE 2005), Rosario, Argentina, SADIO, 2005, Aug. 29–31.

  11. Basturk, H.I., Doblack, J., and Krstic, M.Air Cushion Adaptive Disturbance Cancellation for the Reduction of Wave Induced Motion of Ramp-Connected Ships, Proc. 11th Int. Conf. Fast Sea Transportation (FAST 2011), Am. Soc. Naval Engineers, 2011, pp. 114–121.

  12. Sorensen, A. J. & Egeland, O. Design of Ride Control System for Surface Effect Ships Using Dissipative Control. Automatica 31(no. 2), 183–199 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  13. Nikiforov, V. O. Observers of External Deterministic Disturbances. I. Objects with Known Parameters, Autom. Remote Control 65(no. 10), 1531–1541 (2004).

    Article  MATH  Google Scholar 

  14. Nikiforov, V. O. Observers of External Deterministic Disturbances. II. Objects with Unknown Parameters. Autom. Remote Control 65(no. 11), 1724–1732 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. Basturk, H. I. & Krstic, M. Adaptive Wave Cancelation by Acceleration Feedback for Ramp-Connected Air Cushion-Actuated Surface Effect Ships. Automatica 49, 2591–2602 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, J., Hu, X., Krstić, M. & Sun, Y. Robust Dynamic Positioning of Ships with Disturbances under Input Saturation. Automatica 73, 207–214 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. Swaroop, D., Hedrick, J. K., Yip, P. P. & Gerdes, J. C. Dynamic Surface Control for a Class of Nonlinear Systems. IEEE Trans. Automat. Control 45(no. 10), 1893–1899 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. Fossen, T. I. & Strand, J. P. Passive Nonlinear Observer Design for Ships Using Lyapunov Methods: Full-Scale Experiments with a Supply Vessel. Automatica 35(no. 1), 3–16 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, X., Du, J. & Sun, Y. Robust Adaptive Control for Dynamic Positioning of Ships. IEEE J. Oceanic Eng. 42(no. 4), 826–835 (2017).

    Article  Google Scholar 

  20. Massey, T. & Shtessel, Y. Continuous Traditional and High-Order Sliding Modes for Satellite Formation Control. J. Guid. Control Dynam. 28(no. 4), 826–831 (2005).

    Article  Google Scholar 

  21. Levant, A. Universal SISO Sliding-Mode Controllers with Finite-Time Convergence. IEEE Trans. Automat. Control 49(no. 9), 1447–1451 (2001).

    Article  MATH  Google Scholar 

  22. Utkin, V. I. Skolazyashchie rezhimy i ikh primeneniya v sistemakh s peremennoi strukturoi (Sliding Modes and Their Applications in Systems with Variable Structure). (Nauka, Moscow, 1974).

    Google Scholar 

  23. Utkin, V., Guldner, J. & Shi, J. Sliding Mode Control in Electromechanical Systems. (Taylor & Francis, New York, 1999).

    Google Scholar 

  24. Andrievskii, B. R. & Fradkov, A. L. Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of Automatic Control Theory with MATLAB Examples). (Nauka, St. Petersburg, 1999).

    MATH  Google Scholar 

  25. Andrievskii, B. R., Bobtsov, A. A. & Fradkov, A. L. Metody analiza i sinteza nelineinykh sistem upravleniya (Analysis and Synthesis Methods for Nonlinear Control Systems). (IKI, Moscow-Izhevsk, 2018).

    Google Scholar 

  26. Brown, M. and Shtessel, Y.B.Disturbance Rejection Techniques for Finite Reaching Time Continuous Sliding Mode Control, Proc. Am. Control Conf. (ACC 2001), Arlington, Virginia, USA, vol. 6, Piscataway, New Jersey: IEEE Publications, 2001, pp. 4998–5003.

  27. Besnard, L., Shtessel, Y. B. & Landrum, B. Quadrotor Vehicle Control Via Sliding Mode Controller Driven by Sliding Mode Disturbance Observer. J. Franklin Inst. 349(no. 2), 658–684 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. Besnard, L., Shtessel, Y.B., and Landrum, B.Control of a Quadrotor Vehicle Using Sliding Mode Disturbance Observer, Proc. AIAA Conf. Guidance, Navigation and Control, 2007, paper AIAA–2007–6316.

  29. Hall, C. E. & Shtessel, Y. B. Sliding Mode Disturbance Observer-Based Control for a Reusable Launch Vehicle. J. Guid. Control Dynam. 29(no. 6), 1315–1328 (2006).

    Article  Google Scholar 

  30. Lee, H., Huang, X., and Yin, H.Enhanced Sliding Mode Control for Missile Autopilot Based on Nonlinear Disturbance Observer, Proc. Int. Joint Conf. Computational Sciences and Optimization (CSO 2009), Sanya, Hainan, China, Piscataway, New Jersey, USA: IEEE, 2009, 24–26 Apr, pp. 210–213.

  31. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning. (Addison Wesley Longman, Boston,USA, 1989).

    MATH  Google Scholar 

  32. Rastrigin, L. A. Statisticheskie metody poiska (Statistical Search Methods). (Nauka, Moscow, 1968).

    Google Scholar 

  33. Nichols, R. A., Reichert, R. T. & Rugh, W. J. Gain Scheduling for H-Infinity Controllers: A Flight Control Example. IEEE Trans. Control Syst. Technol. 1(no. 2), 69–79 (1993).

    Article  Google Scholar 

  34. TC ISO/TC 20/SC 8, Flight Dynamics—Concepts, Quantities and Symbols—Part 1: Aircraft Motion Relative to the Air. 1988. www.iso.org/ru/standard/5699.html.

  35. GOST 20058-80, Dinamika letatel’nykh apparatov v atmosfere: terminy, opredeleniya i oboznacheniya (Dynamics of Flying Vehicles in the Atmosphere: Terms, Definitions, and Notation), Moscow: Izd. Standartov, 1981.

  36. Khalil, Kh.K.Nelineinye sistemy (Nonlinear Systems), Fradkov, A.L., Ed., Moscow–Izhevsk: Inst. Komp. Issled., 2009.

  37. Xu, H., Mirmirani, M. D. & Ioannou, P. A. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle. J. Guid. Control Dynam. 27(no. 5), 829–838 (2004).

    Article  Google Scholar 

  38. Yang, J., Li, S., Sun, C. & Guo, L. Nonlinear-Disturbance-Observer-Based Robust Flight Control for Airbreathing Hypersonic Vehicles. IEEE Trans. Aerosp. Electron. Syst. 49(no. 2), 1263–1275 (2013).

    Article  Google Scholar 

  39. Bukov, V. N. Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. An Analytic Approach to the Analysis and Synthesis of Matrix Systems). (Izd. Nauch. Lit. Bochkarevoi, Kaluga, 2006).

    Google Scholar 

  40. Yang, J., Chen, W.-H. & Li, S. Non-Linear Disturbance Observer-Based Robust Control for Systems with Mismatched Disturbances/Uncertainties. IET Control Theory A 5(no. 18), 2053–2062 (2011).

    Article  MathSciNet  Google Scholar 

  41. Levant, A. High-Order Sliding Models, Differentiation and Output-Feedback Control. Int. J. Control 9(no. 10), 924–941 (2003).

    Article  MATH  Google Scholar 

  42. Levant, A. Quasi-Continuous High-Order Sliding-Mode Controllers. IEEE Trans. Automat. Control 50(no. 11), 1812–1816 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  43. Shtessel, Y. B., Shkolnikov, I. A. & Levant, A. Guidance and Control of Missile Interceptor Using Second-Order Sliding Modes. IEEE Trans. Aerosp. Electron. Syst. 45(no. 1), 110–124 (2009).

    Article  Google Scholar 

  44. Pyrkin, A.A., Bobtsov, A.A., Kolyubin, S.A., et al.Output Controller for Quadcopters with Wind Disturbance Cancellation, Proc. 2014 IEEE Conf. on Control Applications (CCA 2014), Antibes, France, IEEE, 2014, pp. 166–170.

  45. Bobtsov, A. A. Robust Output-Control for a Linear System with Uncertain Coefficients. Autom. Remote Control 63(no. 11), 1794–1802 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  46. Bobtsov, A. A., Kapitonov, A. A. & Nikolaev, N. A. Control Over the Output of Nonlinear Systems with Unaccounted-Dynamics. Autom. Remote Control 71(no. 12), 2497–2504 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  47. Caverly, R., Forbes, J.R., Danowsky, B., and Suh, P.M.Gust-Load Alleviation of a Flexible Aircraft using a Disturbance Observer, Proc. AIAA Guidance, Navigation, and Control Conf., AIAA SciTech Forum, (AIAA 2017-1718), Grapevine, Texas, USA: AIAA, 2017, pp. 1–15.

  48. Schrijver, E. & van Dijk, J. Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design. J. Dyn. Sys., J. Dyn. Sys. 124(no. 4), 539–548 (2002).

    Google Scholar 

  49. Sun, J., Wang, C. & Xin, R. Anti-Disturbance Study of Position Servo System Based on Disturbance Observer. IFAC-PapersOnLine 51(no. 4), 202–207 (2018).

    Article  Google Scholar 

  50. Besekerskii, V. A. & Popov, E. P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems). 4th ed (Professiya, St. Petersburg, 2003).

    Google Scholar 

  51. Demircioglu, H. and Basturk, H.I.Adaptive Attitude and Altitude Control of a Quadrotor Despite Unknown windDisturbances, Proc. 56th Annual Conf. Decision and Control (CDC2017), Melbourne, Australia, 2018, pp. 274–279.

  52. Umeno, T. & Hori, Y. Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design. IEEE Trans. Ind. Electron. 38(no. 5), 363–368 (1991).

    Article  Google Scholar 

  53. Umeno, T., Kaneko, T. & Hori, Y. Robust Servosystem Design with Two Degrees of Freedom and Its Application to Novel Motion Control of Robot Manipulators. IEEE Trans. Ind. Electron. 40(no. 5), 473–485 (1993).

    Article  Google Scholar 

  54. Popov, E. P. Teoriya lineinykh sistem avtomaticheskogo regulirovaniya i upravleniya. Uchebnoe posobie dlya vtuzov (Theory of Linear Automatic Regulation and Control Systems. Textbook for Technical Universities). 2nd ed (Nauka, Moscow, 1989).

    MATH  Google Scholar 

  55. Ohishi, K., Ohnishi, K., and Miyachi, K.Torque-Speed Regulation of DC Motor Based on Load Torque Estimation Method, Proc. Int. Power Electronics Conf. (IPEC–Tokyo ’83), Tokyo, Japan, Gakkai, D., Ed., Inst. Electrical Engineers of Japan, 1983, March 27–31, vol. 2, pp. 1209–1218.

  56. Ohnishi, K. New Development of Servo Technology in Mechatronics. IEEE Trans. Ind. Applicat. 107(no. 1), 83–86 (1987).

    Article  Google Scholar 

  57. Elmali, H. & Olgac, N. Sliding Mode Control With Perturbation Estimation (SMCPE): A New Approach. Int. J. Control 56(no. 4), 923–941 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  58. Eom, K., Suh, I., Chung, W., and Oh, S.-R., Disturbance Observer Based Force Control of Robot Manipulatorwithout Force Sensor, Proc. IEEE Int. Conf. on Roboticsand Automation, 1998, vol. 4, pp. 3012–3017.

  59. Hacksel, P. & Salcudean, S. Estimation of Environment Forces and Rigid-Body Velocities Using Observers. Proc. IEEE Int. Conf. on Robotics and Automation 2, 931–936 (1994).

    Google Scholar 

  60. Lewis, F., Abdallah, C. & Dawson, D. Control of Robot Manipulators. (Macmillan, Oxford, 1993).

    Google Scholar 

  61. Oh, H. & Chung, W. Disturbance-Observer-Based Motion Control of Redundant Manipulators Using Inertially Decoupled Dynamics. IEEE/ASME Trans. Mechatronics 4(no. 2), 133–146 (1999).

    Article  Google Scholar 

  62. Johnson, C. Accommodation of Disturbances in Optimal Control Problems. J. Control 15(no. 2), 209–231 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  63. Chen, W.-H., Ballance, D. J., Gawthrop, P. J. & O’Reilly, J. A Nonlinear Disturbance Observer for Robotic Manipulators. IEEE Trans. Ind. Electron. 47(no. 4), 932–938 (2000).

    Article  Google Scholar 

  64. Norrlöf, M. An Adaptive Iterative Learning Control Algorithm with Experiments on An Industrial Robot. IEEE Trans. Robot. Automat. 18(no. 2), 245–251 (2002).

    Article  Google Scholar 

  65. Moore, K.Iterative Learning Control—An Expository Overview, in Applied and Computational Controls, Signal Processing and Circuits, Springer: 1998, vol. 1, pp. 151–214.

  66. Bien, Z. & Xu, J.-X. Iterative Learning Control: Analysis, Design, Integration and Application. (Kluwer, New York, 1998).

    Book  Google Scholar 

  67. Emelianova, J., Pakshin, P., Galkowski, K. & Rogers, E. Stability of Nonlinear Discrete Repetitive Processes with Markovian Switching. Syst. Control Lett. 75, 108–116 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  68. Kwakernaak, H. & Sivan, R. Linear Optimal Control Systems. (Wiley, New York, 1972). Translated under the title Lineinye optimalanye sistemy upravleniya, Moscow: Mir, 1977.

    MATH  Google Scholar 

  69. Krasnova, S. A. & Utkin, V. A. Kaskadnyi sintez nablyudatelei sostoyaniya dinamicheskikh sistem (Cascade Synthesis of State Obsevers for Dynamical Systems). (Nauka, Moscow, 2006).

    Google Scholar 

  70. Kochetkov, S.A., Krasnova, S.A., and Utkin, V.A.Block Design of Robust Electromechanical Systems, Proc.IEEE Int. Workshop on Variable Structure Systems, 2016,pp. 86–91.

  71. Krasnova, S. A. Cascade Design of a Manipulator Control System with Consideration for Dynamics of Electric Drives. Autom. Remote Control 62(no. 11), 1803–1824 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  72. Krasnova, S. A., Utkin, V. A. & Utkin, A. V. Direct Method of Manipulator Endpoint Control Synthesis. IFAC Proc. Volumes 41(no. 2), 2388–2393 (2008).

    Article  Google Scholar 

  73. Zeinali, M. & Notash, L. Adaptive Sliding Mode Control with Uncertainty Estimator for Robot Manipulators. Mech. Mach. Theory 45(no. 1), 80–90 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  74. Islam, S. & Liu, X. Robust Sliding Mode Control for Robot Manipulators. IEEE Trans. Ind. Electron. 58(no. 6), 2444–2453 (2011).

    Article  Google Scholar 

  75. Sun, T., Pei, H. & Pan, Y. et al. Neural Network-Based Sliding Mode Adaptive Control for Robot Manipulators. Neurocomputing 74(no. 14-15), 2377–2384 (2011).

    Article  Google Scholar 

  76. Broomhead, D. H. & Lowe, D. Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 2, 321–355 (1988).

    MathSciNet  MATH  Google Scholar 

  77. Madoński, R., Kordasz, M. & Sauer, P. Application of a Disturbance-Rejection Controller for Robotic-Enhanced Limb Rehabilitation Trainings. ISA Trans 53(no. 4), 899–908 (2014).

    Article  Google Scholar 

  78. Tonietti, G., Schiavi, R., and Bicchi, A.Design and Control of a Variable Stiffness Actuator for Safe and FastPhysical Human/Robot Interaction, Proc. IEEE Int. Conf. Robotics andAutomation (ICRA 2005), Barcelona, Spain, 2005, pp. 526–531.

  79. Cheng, G. & Peng, K. Robust Composite Nonlinear Feedback Control with Application to a Servo Positioning System. IEEE Trans. Ind. Electron. 54(no. 2), 1132–1140 (2007).

    Article  Google Scholar 

  80. Lin, Z., Pachter, M. & Banda, S. Toward Improvement of Tracking Performance-Nonlinear Feedback for Linear System. Int. J. Control 70(no. 1), 1–11 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhao, S. & Gao, Z. An Active Disturbance Rejection Based Approach to Vibration Suppression in Two-Inertia Systems. Asian J. Control 15(no. 2), 350–326 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  82. Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 56(no. 3), 900–906 (2009).

    Article  Google Scholar 

  83. Zheng, Q., Chen, Z. & Gao, Z. A Practical Approach to Disturbance Decoupling Control. Control Eng. Pract. 17(no. 9), 1016–1025 (2009).

    Article  Google Scholar 

  84. Zheng, Q., Gao, L.Q., and Gao, Z.On Validation of Extended State Observer Through Analysis and Experimentation,J. Dyn. Syst., Meas., Control, 2012, vol. 134, no. 2.

  85. Miklosovic, R., Radke, A., and Gao, Z.Discrete Implementation and Generalization of the Extended State Observer, Proc. Am. Control Conf. (ACC 2006), 2006, pp. 2209–2214.

  86. Silva, A. C., Landau, I. D. & Airimiţoaie, T.-B. Direct Adaptive Rejection of Unknown Time-Varying Narrow Band Disturbances Applied to a Benchmark Problem. Europ. J. Control 19(no. 4), 326–336 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  87. Landau, I. D., Silva, A. C. & Airimitoaie, T.-B. et al. Benchmark on Adaptive Regulation-Rejection of Unknown/Time-Varying Multiple Narrow Band Disturbances. Europ. J. Control 19(no. 4), 237–252 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  88. Francis, B. A. & Wonham, W. M. The Internal Model Principle of Control Theory. Automatica 12(no. 5), 457–465 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  89. Anderson, B. D. O. From Youla-Kucera to Identification, Adaptive and Nonlinear Control. Automatica 34(no. 12), 1485–1506 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  90. Landau, I. D., Alma, M. & Constantinescu, A. et al. Adaptive Regulation–Rejection of Unknown Multiple Narrow Band Disturbances (A Review on Algorithms and Applications). Control Eng. Pract. 19(no. 10), 1168–1181 (2011).

    Article  Google Scholar 

  91. Landau, I. D., Alma, M., Martinez, J. J. & Buche, G. Adaptive Suppression of Multiple Time-Varying Unknown Vibrations Using an Inertial Actuator. IEEE Trans. Control Syst. Technol. 19(no. 6), 1327–1338 (2010).

    Article  Google Scholar 

  92. Landau, I. D., Constantinescu, A. & Rey, D. Adaptive Narrow Band Disturbance Rejection Applied to an Active Suspension–An Internal Model Principle Approach. Automatica 41(no. 4), 563–574 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  93. Landau, I.D., Constantinescu, A., and Alma, M.Adaptive Regulation—Rejection of Unknown Multiple Narrow BandDisturbances, Proc. 17th Mediterran. Conf. Control and Automation(MED’09), Thessaloniki, Greece, IEEE, 2009, 24–26 June,pp. 1056–1065.

  94. Airimitoaie, T.-B. & Landau, I. D. Robust and Adaptive Active Vibration Control Using an Inertial Actuator. IEEE Trans. Ind. Electron. 63(no. 10), 6482–6489 (2016).

    Article  Google Scholar 

  95. Aranovskiy, S. & Freidovich, L. B. Adaptive Compensation of Disturbances Formed As Sums of Sinusoidal Signals with Application to an Active Vibration Control Benchmark. Eur. J. Control 19(no. 4), 253–265 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  96. Ohishi, K., Nakao, M., Ohnishi, K. & Miyachi, K. Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System. IEEE Trans. Ind. Electron. IE-34(no 1), 44–49 (1987).

    Article  Google Scholar 

  97. Yokoyama, T. & Kawamura, A. Disturbance Observer Based Fully Digital Controlled PWM Inverter for CVCF Operation. IEEE Trans. Power Electron. 9(no. 5), 473–480 (1994).

    Article  Google Scholar 

  98. Gokhale, K., Kawamura, A. & Hoft, R. Dead Beat Microprocessor Control of PWM Inverter for Sinusoidal Output Waveform Synthesis. IEEE Trans. Ind. Appl. IA-23(no. 5), 901–910 (1987).

    Article  Google Scholar 

  99. Kempf, C.J. and Kobayashi, S.Discrete-Time Disturbance Observer Design for Systems with Time Delay, Proc. 4th Int. Workshop on Advanced Motion Control (AMC’96-MIE), Tsu, Mie, Japan, Piscataway, New Jersey, USA: IEEE, 1996, 18–21 March, pp. 332–337.

  100. Kempf, C. J. & Kobayashi, S. Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table. IEEE Trans. Control Syst. Technol. 7(no. 5), 513–526 (1999).

    Article  Google Scholar 

  101. Lee, H. S. & Tomizuka, M. Robust Motion Controller Design for a High-Accuracy Positioning Systems. IEEE Trans. Ind. Electron. 43(no. 1), 48–55 (1996).

    Article  Google Scholar 

  102. Goodwin, G. C. & Sin, K. S. Adaptive Filtering Prediction and Control. (Prentice Hall, Englewood Cliffs, 1984).

    MATH  Google Scholar 

  103. Dash, P., Jena, R., Panda, G. & Routray, A. An Extended Complex Kalman Filter for Frequency Measurement of Distorted Signals. IEEE Trans. Instrum. Meas. 49(no. 4), 746–753 (2000).

    Article  Google Scholar 

  104. Chen, X., Su, C.-Y. & Fukuda, T. A Nonlinear Disturbance Observer for Multivariable Systems and Its Application to Magnetic Bearing Systems. IEEE Trans. Control Syst. Technol. 12(no. 4), 569–577 (2004).

    Article  Google Scholar 

  105. Mattavelli, P. An Improved Deadbeat Control for UPS Using DisturbanceObservers. IEEE Trans. Ind. Electron. 52(no. 1), 206–212 (2005).

    Article  Google Scholar 

  106. Luenberger, D. G. An Introduction to Observers. IEEE Trans. Automat. Control 16, 596–602 (1971).

    Article  Google Scholar 

  107. Andreev, Yu. N. Upravlenie konechnomernymi lineinymi ob”ektami (Control Over Finite-Dimensional Linear Objects). (Nauka, Moscow, 1976).

    MATH  Google Scholar 

  108. Krasnova, S.A. and Utkin, V.A.Prelimit Implementation of States and Disturbances Observer on SlidingModes, Proc. 2015 Int. Workshop on Recent Advances in Sliding Modes,RASM 2015, Piscataway, New Jersey, USA: IEEE, 2015, 9–11 Apr.

  109. Chilikin, M. G., Klyuchev, V. I. & Sandler, A. S. Teoriya avtomatizirovannogo elektroprivoda (Theory of the Automated Electric Drive). (Energiya, Moscow, 1979).

    Google Scholar 

  110. Utkin, V. A. Problems of the Control of Asynchronous Electric Drive. Autom. Remote Control 54(no. 12), 1769–1779 (1993).

    MathSciNet  Google Scholar 

  111. Krasnova, S. A. & Mysik, N. S. Cascade Synthesis of a State Observer with Nonlinear Correcting Influences. Autom. Remote Control 75(no. 2), 263–280 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  112. Mohamed, Y. A.-R. I. Design and Implementation of a Robust Current-Control Scheme for a PMSM Vector Drive with a Simple Adaptive Disturbance Observer. IEEE Trans. Ind. Electron. 54(no. 4), 1981–1988 (2007).

    Article  Google Scholar 

  113. Derevitskii, D. P. & Fradkov, A. L. Prikladnaya teoriya diskretnykh adaptivnykh sistem upravleniya (Applied Theory of Discrete Adaptive Control Systems). (Nauka, Moscow, 1981).

    MATH  Google Scholar 

  114. Mohamed, Y.-R. & El-Saadany, E. Robust High Bandwidth Discrete-Time Predictive Current Control with Predictive Internal Model–A Unified Approach For Voltage-Source PWM Converters. IEEE Trans. Power Electron. 23(no. 1), 126–136 (2008).

    Article  Google Scholar 

  115. Habetler, T. G. A Space Vector-Based Rectifier Regulator for AC/DC/AC Converters. IEEE Trans. Power Electron. 8(no. 1), 30–36 (1993).

    Article  Google Scholar 

  116. Yazdani, D., Mojiri, M., Bakhshai, A. & Joós, G. A Fast and Accurate Synchronization Technique for Extraction of Symmetrical Components. IEEE Trans. Power Electron 24(no. 3), 674–684 (2009).

    Article  Google Scholar 

  117. Li, S. & Liu, Z. Adaptive Speed Control for Permanent-Magnet Synchronous Motor System with Variations of Load Inertia. IEEE Trans. Ind. Electron. 56(no. 8), 3050–3059 (2009).

    Article  Google Scholar 

  118. Blaschke, F. Principle of Field Orientation as Used in the New Transvektor Control System for Induction Machines, (Das Prinzip der feldorientierung, die Grundlage fuer die TRANSVEKTOR-Regelung von Drehfeldmaschinen). Siemens-Z 45(no. 10), 757–760 (1971).

    Google Scholar 

  119. Volkov, N. I. & Milovzorov, V. P. Elektromashinnye ustroistva avtomatiki: uchebnik dlya vuzov (Electromachine Devices for Automatics: A Textbook). (Vysshaya Shkola, Moscow, 1986).

    Google Scholar 

  120. Lascu, C., Boldea, I. & Blaabjerg, F. A Class of Speed-Sensorless Sliding-Mode Observers for High-Performance Induction Motor Drives. IEEE Trans. Ind. Electron. 56(no. 9), 3394–3403 (2009).

    Article  Google Scholar 

  121. She, J.-H., Xin, X. & Pan, Y. Equivalent-Input-Disturbance Approachanalysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control System. IEEE/ASME Trans. Mechatron. 16(no. 2), 330–340 (2011).

    Article  Google Scholar 

  122. Schuhmann, T., Hofmann, W. & Werner, R. Improving Operational Performance of Active Magnetic Bearings Using Kalman Filter and State Feedback Control. IEEE Trans. Ind. Electron. 59(no. 2), 821–829 (2012).

    Article  Google Scholar 

  123. Yang, J., Li, S. & Yu, X. Sliding-Mode Control for Systems with Mismatched Uncertainties via a Disturbance Observer. IEEE Trans. Ind. Electron. 60(no. 1), 160–169 (2013).

    Article  Google Scholar 

  124. Chen, W.-H. Nonlinear Disturbance Observer Based Control for Nonlinear Systems with Harmonic Disturbances. IFAC Proc. Volumes 34(no. 6), 329–334 (2001). Proc. 5th IFAC Sympos. on Nonlinear Control Systems2001, St. Petersburg, Russia, 4–6 July 2001.

    Article  Google Scholar 

  125. Chen, W.-H. Disturbance Observer Based Control for Nonlinear Systems. IEEE/ASME Trans. Mechatron. 9(no. 4), 706–710 (2004).

    Article  Google Scholar 

  126. Chen, W.-H., Yang, J., Guo, L. & Li, S. Disturbance-Observer-Based Control and Related Methods–an Overview. IEEE Trans. Ind. Electron. 63(no. 2), 1083–1095 (2016).

    Article  Google Scholar 

  127. Matthews, G. & DeCarlo, R. Decentralized Tracking for a Class of Interconnected Nonlinear Systems Using Variable Structure Control. Automatica 24(no. 2), 187–193 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  128. Utkin, V. and Shi, J.Integral Sliding Mode in Systems Operating Under Uncertainty Condition, Proc. Conf. Decision Control (CDC’96), Koba, Japan, 1996, pp. 4591–4596.

  129. Michail, K., Zolotas, A. & Goodall, R. Optimised Sensor Selection for Control and Fault Tolerance of Electromagnetic Suspension Systems: A Robust Loop Shaping Approach. ISA Trans. 53(no. 1), 97–109 (2014).

    Article  Google Scholar 

  130. Yang, J., Chen, W.-H. & Li, S. et al. Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives–A Survey. IEEE Trans. Ind. Electron. 64(no. 4), 3273–3285 (2017).

    Article  MathSciNet  Google Scholar 

  131. Venhovens, P. & Naab, K. Vehicle Dynamics Estimation Using Kalman Filters. Vehicle Syst. Dyn. 32(no. 2), 171–184 (1999).

    Article  Google Scholar 

  132. Dobner, D.J.Dynamic Engine Models for Control Development. Part 1: Nonlinear and Linear Model Formulation, Application of Control Theory in the Automotve Industry, Dorgham, M.A., Ed., 1983, vol. SP4 of Proc. Int. Association for Vehicle Design, pp. 54–74.

  133. Smith, J. M. Closer Control of Loops with Dead Time. Chem. Eng. Prog. 53(no. 5), 217–219 (1957).

    Google Scholar 

  134. Titov, A.V., Pyrkin, A.A., Bobtsov, A.A., et al.Output Adaptive Control for Active Suspension Rejecting Road Disturbance,Proc. Int. Conf. Control Applications (CCA 2011), Denver, CO, USA,Piscataway, New Jersey, USA: IEEE, 2011, Sept. 28–30, pp. 527–531.

  135. Bobtsov, A.A. and Pyrkin, A.A.Compensating for a Harmonic Disturbance under Control Delays, Izv. Ross. Akad.Nauk, Teor. Sist. Upravlen., 2008, no. 4, pp. 19–23.

  136. Bobtsov, A. A. & Pyrkin, A. A. Compensation of Unknown Sinusoidal Disturbances in Linear Plants of Arbitrary Relative Degree. Autom. Remote Control 70(no. 3), 449–456 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  137. Lion, P. M. Rapid Identification of Linear and Nonlinear Systems. AIAA J. 18(no. 5), 1835–1842 (1967).

    Article  Google Scholar 

  138. Lindorff, D. P. & Carrol, R. L. Survey of Adaptive Control Using Lyapunov Design. Int. J. Control 18(no. 5), 897–914 (1973).

    Article  MATH  Google Scholar 

  139. Narendra, K.S. and Kudva, P., Stable Adaptive Schemes for System Identification and Control. Part I, II, IEEE Trans. Automat. Control, 1974, vol. SMS-4, no. 6, 542-560

  140. Gawthrop, P. J. Continuous-Time Self-Tuning Control. (Research Studies Press, Letchworth, United Kingdom, 1987).

    MATH  Google Scholar 

  141. Demircioglu, H. & Karasu, E. Generalized Predictive Control: A Practical Application and Comparison of Discrete and Continuous-Time Versions. IEEE Control Syst. Mag. 20(no. 5), 36–47 (2000).

    Article  Google Scholar 

  142. Fradkov, A. L. & Andrievsky, B. Combined Adaptive Controller for UAV Guidance. Eur. J. Control 11(no. 1), 71–79 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  143. Xue, W., Bai, W. & Yang, S. et al. ADRC with Adaptive Extended State Observer and Its Application to Air-Fuel Ratio Control in Gasoline Engines. IEEE Trans. Ind. Electron. 62(no. 9), 5847–5857 (2015).

    Article  Google Scholar 

  144. Basturk, H.I.A Backstepping Approach for an Active Suspension System, Proc. Am. Control Conf. (ACC 2016), Boston, USA, AACC, 2016, July 6–8, pp. 7579–7583.

  145. Krstic, M., Kanellakopoulos, I. & Kokotovic, P. Nonlinear and Adaptive Control Design. (Wiley, New York, 1995).

    MATH  Google Scholar 

  146. Ohnishi, K., Shibata, M. & Murakami, T. Motion Control for Advanced Mechatronics. IEEE/ASME Trans. Mechatron. 1(no. 1), 56–67 (1996).

    Article  Google Scholar 

  147. Luenberger, D. G. Canonical Forms for Linear Multivariable Systems. IEEE Trans. Automat. Control 12(no. 3), 290–293 (1967).

    Article  MathSciNet  Google Scholar 

  148. Spong, M. W., Corke, P. & Lozano, R. Nonlinear Control of the Reaction Wheel Pendulum. Automatica 37, 1845–1851 (2001).

    Article  MATH  Google Scholar 

  149. Beznos, A.V., Grishin, A.A., Lenskii, A.V., Okhotsimskii, D.E., and Formalaskii, A.M.Flywheel Control with Fixed Pendulum Suspension Point, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2004, no. 1, pp. 27–38.

  150. Andrievskii, B. R. Global Stabilization of an Unstable Pendulum with Flywheel Control. Upravlen. Bolashimi Sist. no. 24, 258–280 (2009).

    Google Scholar 

  151. Pyrkin, A.A., Bobtsov, A.A., Kapitanyuk, Y.A., et al.Adaptive Cancellation of Unknown Multiharmonic Disturbance for NonlinearPlant with Input Delay, Proc. 19th Mediterranean Conf. ControlAutomation (MED 2011), Corfu, Greece, Piscataway, New Jersey, USA: IEEE,2011, 20–23 June.

  152. Pyrkin, A.A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M.Rejection of Sinusoidal Disturbance of Unknown Frequency for Linear Systemwith Input Delay, Proc. Am. Control Conf. (ACC 2010), Baltimore,USA, IEEE, 2010, 30 June–2 July, pp. 5688–5693.

  153. Roetenberg, D., Luinge, H., Baten, C. & Veltink, P. Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation. IEEE Trans. Neural Syst. Rehab. Eng. 13(no. 3), 395–405 (2005).

    Article  Google Scholar 

  154. Fast, B., Miklosovic, R., and Radke, A.Active Disturbance Rejection Control of a MEMS Gyroscope, Proc. Am.Control Conf. (ACC 2008), 2008, pp. 3746–3750.

  155. Zheng, Q., Dong, L., Lee, D. & Gao, Z. Active Disturbance Rejection Control for MEMS Gyroscopes. IEEE Trans. Control Syst. Technol. 17(no. 6), 1432–1438 (2009).

    Article  Google Scholar 

  156. Basturk, H. I. Observer-Based Boundary Control Design for the Suppression of Stick-Slip Oscillations in Drilling Systems With Only Surface Measurements. Control 139, 104501–7 (2017).

    Google Scholar 

  157. Krstic, M. Delay Compensation for Nonlinear, Adaptive and PDE System. (Birkhäuser, Basel, Switzerland, 2012).

    Google Scholar 

  158. Krstic, M. & Smyshlyaev, A. Backstepping Boundary Control for First-Order Hyperbolic PDEs and Application to Systems with Actuator and Sensor Delays. Syst. Control Lett. 57(no. 9), 750–758 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  159. Zhang, H., Zhang, G. & Wang, J. Hnfty Observer Design for LPV Systems with Uncertain Measurements on Scheduling Variables: Application to an Electric Ground Vehicle. IEEE/ASME Trans. Mechatron. 21(no. 3), 1659–1670 (2016).

    Article  Google Scholar 

  160. Chen, X., Li, J., Yang, J. & Li, S. A Disturbance Observer Enhanced Composite Cascade Control with Experimental Studies. Int. J. Control, Autom. Systems 11(no. 3), 555–562 (2013).

    Article  Google Scholar 

  161. Zhao, D., Zheng, Q. & Gao, F. et al. Disturbance Decoupling Control of an Ultra-High Speed Centrifugal Compressor for the Air Management of Fuel Cell Systems. Int. J. Hydrogen Energ. 39(no. 4), 1788–1798 (2014).

    Article  Google Scholar 

  162. Vahidi, A., Kolmanovsky, I., and Stefanopoulou, A.Constraint Management in Fuel Cells: A Fast Reference Governor Approach, Proc. 2005 Am. Control Conf. (ACC 2005), Portland, USA, 2005, vol. 6, pp. 3865–3870.

  163. Zhao, D., Dou, M., Blunier, B., and Miraoui, A.Control of an Ultra High Speed Centrifugal Compressor for the AirManagement of Fuel Cell Systems, Conf. Record—IASAnnual Meeting (IEEE Industry Applications Society), 2012.

  164. Utkin, V. A. Method of Separation of Motions in Observation Problems. Autom. Remote Control 51(no. 3), 300–308 (1990).

    MathSciNet  MATH  Google Scholar 

  165. Utkin, V. A. Invariance and Independence in Systems with Separable Motion. Autom. Remote Control 62(no. 11), 1825–1843 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  166. Krasnova, S. A., Utkin, V. A. & Utkin, A. V. Block Approach to Analysis and Design of the Invariant Nonlinear Tracking Systems. Autom Remote Control 78(no. 12), 2120–2140 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  167. Utkin, A.V. and Utkin, V.A.Robust Synthesis of the Control System of a Steam Generator under the Actionof External Disturbances, Proc. 2018 14th Int. Conf. Stability andOscillations of Nonlinear Control Systems (Pyatnitskiy’s Conf.), STAB 2018,2018, pp. 1–4.

Download references

Acknowledgements

The results of Sections 1–7 were obtained with the financial support of the Russian Foundation for Basic Research, project no. 18-38-20037. Results shown in Section 8 were obtained at the Institute of Mathematics and Mechanics of the Russian Academy of Sciences within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation, reg. no. NIOKTR AAAA-A19-119120290136-9.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrievsky, B., Furtat, I. Disturbance Observers: Methods and Applications. II. Applications. Autom Remote Control 81, 1775–1818 (2020). https://doi.org/10.1134/S0005117920100021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920100021

Keywords

Navigation