Skip to main content
Log in

Dissolution kinetics of particulate assemblages in channels

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The combined process of transport and dissolution of microcrystals in a semi-infinite channel is considered. An exact analytical solution of the Fokker–Planck-type equation for the crystal-radius distribution function is found for the case of constant undersaturation. The flux of crystals at a certain channel cross-section, the concentration distribution of crystals, and their dissolution intensity are determined theoretically. We demonstrate that the Péclet number and the coordinate of channel cross-section where the particles are introduced, substantially influence the distribution function and other key characteristics of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.F. Kelton, A.L. Greer,Nucleation in condensed matter: applications in materials and biology (Elsevier, Amsterdam, 2008)

  2. A.C. Zettlemoyer,Nucleation (Dekker, New York, 1969)

  3. J.W. Mullin,Crystallization (Butterworth, London, 1972)

  4. Yu.A. Buyevich, Yu.M. Goldobin, G.P. Yasnikov, Int. J. Heat Mass Trans. 37, 3003 (1994)

    Article  Google Scholar 

  5. D.V. Alexandrov, A.Yu. Zubarev, Phil. Trans. R. Soc. A 377, 20180353 (2019)

    Article  ADS  Google Scholar 

  6. P.K. Galenko, D.V. Alexandrov, Phil. Trans. R. Soc. A 376, 20170210 (2018)

    Article  ADS  Google Scholar 

  7. V.G. Dubrovskii,Nucleation theory and growth of nanostructures (Springer, Berlin, 2014)

  8. D.V. Alexandrov, J. Phys. A: Math. Theor. 48, 035103 (2015)

    Article  ADS  Google Scholar 

  9. Yu.A. Buyevich, D.V. Alexandrov, IOP Conf. Ser.: Mater. Sci. Eng. 192, 012001 (2017)

    Article  Google Scholar 

  10. D.V. Alexandrov, Phil. Mag. Lett. 94, 786 (2014)

    Article  ADS  Google Scholar 

  11. Yu.A. Buyevich, N.A. Korolyova, I.A. Natalukha, Int. J. Heat Mass Trans. 36, 2223 (1993)

    Article  Google Scholar 

  12. Yu.A. Buyevich, N.A. Korolyova, I.A. Natalukha, Int. J. Heat Mass Trans. 36, 2233 (1993)

    Article  Google Scholar 

  13. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    Article  ADS  Google Scholar 

  14. E.V. Makoveeva, D.V. Alexandrov, Phil. Trans. R. Soc. A 376, 20170327 (2018)

    Article  ADS  Google Scholar 

  15. E.V. Makoveeva, D.V. Alexandrov, Phil. Trans. R. Soc. A 377, 20180210 (2019)

    Article  ADS  Google Scholar 

  16. A.O. Ivanov, A.Yu. Zubarev, Physica A 251, 348 (1998)

    Article  ADS  Google Scholar 

  17. D.V. Alexandrov, A.A. Ivanov, J. Exper. Theor. Phys. 108, 821 (2009)

    Article  ADS  Google Scholar 

  18. D.V. Alexandrov, Int. J. Heat Mass Trans. 47, 1383 (2004)

    Article  Google Scholar 

  19. M.V. Fedoruk,Saddle-point method (Nauka, Moscow, 1977)

  20. Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)

    Article  ADS  Google Scholar 

  21. D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, Phil. Trans. R. Soc. A 376, 20170217 (2018)

    Article  ADS  Google Scholar 

  22. V.V. Slezov,Kinetics of first-order phase transitions (Wiley, Weinheim, 2009)

  23. D.L. Aseev, D.V. Alexandrov, Dokl. Phys. 51, 291 (2006)

    Article  ADS  Google Scholar 

  24. D.V. Alexandrov, J. Phys. Chem. Solids 91, 48 (2016)

    Article  ADS  Google Scholar 

  25. D.V. Alexandrov, Phil. Mag. Lett. 94, 786 (2014)

    Article  ADS  Google Scholar 

  26. R. Oswald, J. Ulrich, Cryst. Growth Des. 15, 4556 (2015)

    Article  Google Scholar 

  27. N.N. Kulov, E.K. Nikolaishvili, V.M. Barabash, L.N. Braginski, V.A. Malyusov, N.M. Zhavoronkov, Chem. Eng. Comm. 21, 259 (1983)

    Article  Google Scholar 

  28. U.H. Tundal, N. Ryum, Met. Trans. A 23, 433 (1992)

    Article  Google Scholar 

  29. J. Wang, D.R. Flanagan, J. Pharm. Sci. 88, 731 (1999)

    Article  Google Scholar 

  30. M. Adobes-Vidal, H. Pearce, P.R. Unwin, Phys. Chem. Chem. Phys. 19, 17827 (2017)

    Article  Google Scholar 

  31. H. Wen, T. Li, K.R. Morris, K. Park, J. Phys. Chem. B 108, 11219 (2004)

    Article  Google Scholar 

  32. G.A. Akselrud, A.D. Molchanov,Dissolution of solids (Khimia, Moscow, 1977)

  33. J. Siepmann, F. Siepmann, Int. J. Pharm. 453, 12 (2013)

    Article  Google Scholar 

  34. M.W. Dewhirst, T.W. Secomb, Nat. Rev. Cancer 17, 738 (2017)

    Article  Google Scholar 

  35. H. Ha, M. Ziegler, M. Welander, N. Bjarnegård, C.-J. Carlhäll, M. Lindenberger, T. Länne, T. Ebbers, P. Dyverfeldt, Front. Physiol. 9, 36 (2018)

    Article  Google Scholar 

  36. A.A. Ivanov, D.V. Alexandrov, I.V. Alexandrova, Phil. Trans. R. Soc. A 378, 20190246 (2020)

    Article  Google Scholar 

  37. J.F. Mustard, E.A. Murphy, H.C. Rowsell, H.G. Downie, Am. J. Med. 33, 621 (1962)

    Article  Google Scholar 

  38. R.L. Smith, E.F. Blick, J. Coalson, P.D. Stein, J. Appl. Physiol. 32, 261 (1972)

    Article  Google Scholar 

  39. P.D. Stein, H.N. Sabbah, J.V. Pitha, Am. J. Cardiol. 39, 159 (1977)

    Article  Google Scholar 

  40. P.D. Stein, F.J. Walburn, H.N. Sabbah, J. Biomech. Eng. 104, 238 (1982)

    Article  Google Scholar 

  41. A.P. Yoganathan, Y.-R. Woo, H.-W. Sung, J. Biomech. 19, 433 (1986)

    Article  Google Scholar 

  42. A.M. Sallam, N. Hwang, Biorheology 21, 783 (1983)

    Article  Google Scholar 

  43. P.C. Lu, H.C. Lai, J.S. Liu, J. Biomech. 34, 1361 (2001)

    Article  Google Scholar 

  44. J.-H. Yen, S.-F. Chen, M.-K. Chern, P.-C. Lu, J. Artif. Organs 17, 178 (2014)

    Article  Google Scholar 

  45. J.D. Humphrey, M.A. Schwartz, G. Tellides, D.M. Milewicz, Circ. Res. 116, 1448 (2015)

    Article  Google Scholar 

  46. P.F. Davies, A. Remuzzi, E.J. Gordon, C.F. Dewey, M.A. Gimbrone, Proc. Natl. Acad. Sci. U.S.A. 83, 2114 (1986)

    Article  ADS  Google Scholar 

  47. P.F. Davies, Nat. Clin. Pract. Cardiovasc. Med. 6, 16 (2009)

    Article  Google Scholar 

  48. V. Mehta, E. Tzima, Nature 540, 531 (2016)

    Article  ADS  Google Scholar 

  49. L. Wang, J.-Y. Luo, B. Li, X.Y. Tian, L.-J. Chen, Y. Huang, J. Liu, D. Deng, C.W. Lau, S. Wan, D. Ai, K.-L.K. Mak, K.K. Tong, K.M. Kwan, N. Wang, J.-J. Chiu, Y.Zhu, Y. Huang, Nature 540, 579 (2016)

    Article  ADS  Google Scholar 

  50. K. Yosida,Functional analysis (Springer-Verlag, Berlin, 2009)

  51. H.S. Carslaw, J.C. Jaeger,Conduction of heat in solids (Clarendon Press, Oxford, 1959)

  52. D.V. Alexandrov, A.P. Malygin, Int. J. Heat Mass Trans. 54, 1144 (2011)

    Article  Google Scholar 

  53. D.V. Alexandrov, Chem. Eng. Sci. 117, 156 (2014)

    Article  Google Scholar 

  54. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Phil. Trans. R. Soc. A 377, 20180215 (2019)

    Article  ADS  Google Scholar 

  55. D.V. Alexandrov, I.G. Nizovtseva, Phil. Trans. R. Soc. A 377, 20180214 (2019)

    Article  ADS  Google Scholar 

  56. I.V. Alexandrova, D.V. Alexandrov, Phil. Trans. R. Soc. A 378, 20190245 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Alexandrov.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, D.V., Okhezin, S.P. & Ivanov, A.A. Dissolution kinetics of particulate assemblages in channels. Eur. Phys. J. Spec. Top. 229, 3021–3032 (2020). https://doi.org/10.1140/epjst/e2020-000032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000032-3

Navigation