Skip to main content
Log in

How the shift in the phase transition temperature influences the evolution of crystals during the intermediate stage of phase transformations

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The influence of the phase transition temperature shift on the growth dynamics of a polydisperse ensemble of spherical crystals in metastable melts and solutions is studied. This shift is connected with the Gibbs–Thomson effect and the attachment kinetics of atoms at the phase transition interfaces of evolving crystals. The nonlinear model of kinetic and balance equations with allowance for the particle “diffusion” term is solved analytically. The obtained solution is compared with the case when this temperature shift is not taken into account. It is shown that the Gibbs–Thomson and attachment kinetics effects slightly accelerate the system desupercooling for a single-component titanium melt. This shifts the particle-size distribution function and changes the shape of its tail, which is responsible for the concluding stage of Ostwald ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Herlach, P. Galenko, D. Holland-Moritz,Metastable solids from undercooled melts (Elsevier, Amsterdam, 2007)

  2. V.G. Dubrovskii,Nucleation theory and growth of nanostructures (Springer, Berlin, 2014)

  3. P.K. Galenko, D.V. Alexandrov, Philos. Trans. R. Soc. A 376, 20170210 (2018)

    Article  ADS  Google Scholar 

  4. D.V. Alexandrov, A.Yu. Zubarev, Philos. Trans. R. Soc. A 377, 20180353 (2019)

    Article  ADS  Google Scholar 

  5. D.V. Alexandrov, A.Yu. Zubarev, Philos. Trans. R. Soc. A 378, 20200002 (2020)

    Article  Google Scholar 

  6. W. Kurz, D.J. Fisher,Fundamentals of solidification (Trans. Tech. Publ., Aedermannsdorf, 1989)

  7. A.H. Janse,Nucleation and crystal growth in batch crystallizers (Delft University of Technology, Delft, 1977)

  8. A. Pot,Industrial sucrose crystallization (Delft University of Technology, Delft, 1980)

  9. I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190245 (2020)

    Article  Google Scholar 

  10. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    Article  ADS  Google Scholar 

  11. D.V. Alexandrov, I.G. Nizovtseva, Philos. Trans. R. Soc. A 377, 20180214 (2019)

    Article  ADS  Google Scholar 

  12. I.H. Leubner, J. Disp. Sci. Technol. 23, 577 (2002)

    Article  Google Scholar 

  13. K.F. Kelton, A.L. Greer,Nucleation in condensed matter: applications in materials and biology (Elsevier, Amsterdam, 2008)

  14. E.M. Lifshitz, L.P. Pitaevskii,Physical kinetics (Pergamon, Oxford, 1981)

  15. D.V. Alexandrov, Philos. Mag. Lett. 94, 786 (2014)

    Article  ADS  Google Scholar 

  16. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 376, 20170327 (2018)

    Article  ADS  Google Scholar 

  17. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 377, 20180210 (2019)

    Article  ADS  Google Scholar 

  18. D.V. Alexandrov, Phys. Lett. A 378, 1501 (2014)

    Article  ADS  Google Scholar 

  19. V.A. Shneidman, Phys. Rev. E 82, 031603 (2010)

    Article  ADS  Google Scholar 

  20. V.A. Shneidman, Phys. Rev. E 84, 031602 (2011)

    Article  ADS  Google Scholar 

  21. D.V. Alexandrov, P.K. Galenko, L.V. Toropova, Philos. Trans. R. Soc. A 376, 20170215 (2018)

    Article  ADS  Google Scholar 

  22. P.K. Galenko, D.V. Alexandrov, E.A. Titova, Philos. Trans. R. Soc. A 376, 20170218 (2018)

    Article  ADS  Google Scholar 

  23. V.P. Koverda, V.N. Skokov, V.P. Skripov, Phys. Status Solidi A 74, 343 (1982)

    Article  ADS  Google Scholar 

  24. J. Gao, M. Han, A. Kao, K. Pericleous, D.V. Alexandrov, P.K. Galenko, Acta Mater. 103, 184 (2016)

    Article  Google Scholar 

  25. P.K. Galenko, K. Reuther, O.V. Kazak, D.V. Alexandrov, M. Rettenmayr, Appl. Phys. Lett. 111, 031602 (2017)

    Article  ADS  Google Scholar 

  26. D.V. Alexandrov, A.P. Malygin, J. Phys. A: Math. Theor. 46, 455101 (2013)

    Article  ADS  Google Scholar 

  27. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 377, 20180209 (2019)

    Article  ADS  Google Scholar 

  28. D.V. Alexandrov, I.V. Alexandrova, A.A. Ivanov, A.P. Malygin, I.O. Starodumov, L.V. Toropova, Russ. Metall. (Metally) 2019, 787 (2019)

    Article  ADS  Google Scholar 

  29. V.A. Ditkin, A.P. Prudnikov,Integral transforms and operational calculus (Pergamon Press, Oxford, 1965)

  30. V.V. Slezov, J. Phys. Chem. Solids 39, 367 (1978)

    Article  ADS  Google Scholar 

  31. V.V. Slezov,Kinetics of first-order phase transitions (Wiley, VCH, Weinheim, 2009)

  32. D.V. Alexandrov, J. Phys. A: Math. Theor. 48, 035103 (2015)

    Article  ADS  Google Scholar 

  33. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 378, 20190247 (2020)

    Article  Google Scholar 

  34. D.V. Alexandrov, J. Phys. Chem. Solids 91, 48 (2016)

    Article  ADS  Google Scholar 

  35. R.N. Hills, D.E. Loper, P.H. Roberts, Q. J. Mech. Appl. Math. 36, 505 (1983)

    Article  Google Scholar 

  36. A.C. Fowler, IMA J. Appl. Maths 35, 159 (1985)

    Google Scholar 

  37. V.T. Borisov,Theory of two-phase zone of a metal ingot (Metallurgiya Publishing House, Moscow, 1987)

  38. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 377, 20180215 (2019)

    Article  ADS  Google Scholar 

  39. D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, Philos. Trans. R. Soc. A 376, 20170217 (2018)

    Article  ADS  Google Scholar 

  40. R.C. Kerr, A.W. Woods, M.G. Worster, H.E. Huppert, J. Fluid Mech. 216, 323 (1990)

    Article  ADS  Google Scholar 

  41. M.G. Worster, J. Fluid Mech. 167, 481 (1986)

    Article  ADS  Google Scholar 

  42. D.V. Alexandrov, I.A. Bashkirtseva, L.B. Ryashko, Philos. Trans. R. Soc. A 376, 20170216 (2018)

    Article  ADS  Google Scholar 

  43. D.V. Alexandrov, A.P. Malygin, Int. J. Heat Mass Trans. 54, 1144 (2011)

    Article  Google Scholar 

  44. D.V. Alexandrov, Int. J. Heat Mass Trans. 47, 1383 (2004)

    Article  Google Scholar 

  45. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Eur. Phys. J. Special Topics 229, 365 (2020)

    Article  ADS  Google Scholar 

  46. D.V. Alexandrov, Eur. Phys. J. Special Topics 229, 383 (2020)

    Article  ADS  Google Scholar 

  47. I.G. Nizovtseva, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190248 (2020)

    Article  Google Scholar 

  48. D.L. Aseev, D.V. Alexandrov, Acta Mater. 54, 2401 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenya V. Makoveeva.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makoveeva, E.V., Alexandrov, D.V. How the shift in the phase transition temperature influences the evolution of crystals during the intermediate stage of phase transformations. Eur. Phys. J. Spec. Top. 229, 2923–2935 (2020). https://doi.org/10.1140/epjst/e2020-000113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000113-3

Navigation