Skip to main content

Advertisement

Log in

A mapping method of dynamic response and stiffness characteristics for realizing a customized nonlinear oscillator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With nonlinear systems extensively studied for applications in vibration isolation, energy harvesting, etc., most of the studies focused on the response of the nonlinear oscillator defined by some explicit equations, namely the typical oscillator. Rare studies or approaches are devoted to the non-typical nonlinear oscillator for which the stiffness profile is possible defined by an arbitrary curve without an explicit function. This paper proposes a novel design method for both typical and non-typical monostable hardening oscillators, especially for the latter one in order to achieve some arbitrarily specified response. The key idea is to construct a series of linear equivalent oscillators to reproduce the response of the nonlinear oscillator. A trial stiffness characteristic expression of the linear equivalent oscillators has been given as a function of several particular variables. It has been verified that the linear equivalent oscillators can obtain the response for some typical nonlinear oscillators. Moreover, the method can be also used in a reversed way to identify the stiffness characteristics from a given response for either typical or non-typical systems. In particular, this parameter identification feature can be utilized to design a customized oscillator with arbitrarily specified hardening response. By constructing the linear equivalent oscillators to reproduce the desired response, the linear equivalent stiffness expression can be determined, while the customized nonlinear stiffness characteristics can be obtained accordingly. Experiments on an elaborated example have validated effectiveness of the proposed method. It shows that the mapping method can be used to determine the proper stiffness characteristics for customized hardening response beyond the scope of typical nonlinear oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carmen, H., Lang, Z.Q., Stephen, A.B.: A frequency domain analysis of the effects of nonlinear damping on the Duffing equation. Mech. Syst. Signal. Process. 45(1), 49–67 (2014)

    Article  Google Scholar 

  2. Liu, C.C., Jing, X.J.: Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn. 84(4), 2079–2098 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear Energy Harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)

    Article  Google Scholar 

  4. Zhou, S.X., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  Google Scholar 

  5. Wang, J., Zhou, S., Zhang, Z., Yurchenko, D.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 181, 645–652 (2019)

    Article  Google Scholar 

  6. Lai, Z.H., Wang, J.L., Zhang, C.L., Zhang, G.Q., Yurchenko, D.: Harvest wind energy from a vibro-impact DEG embedded into a bluff body. Energy Convers. Manage. 199, 111993 (2019)

    Article  Google Scholar 

  7. Wu, Y., Qiu, J., Zhou, S., Ji, H., Chen, Y., Li, S.: A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 231, 600–614 (2018)

    Article  Google Scholar 

  8. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound. Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  9. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 102001–102010 (2011)

    Article  Google Scholar 

  10. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  11. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer, Berlin (2013)

    MATH  Google Scholar 

  12. Malatkar, P., Nayfeh, A.H.: Calculation of the jump frequencies in the response of sdof non-linear systems. J. Sound. Vib. 254, 1005–1011 (2002)

    Article  Google Scholar 

  13. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound. Vib. 318(4–5), 1250–1261 (2008)

    Article  Google Scholar 

  14. Friswell, M.I., Penny, J.: The accuracy of jump frequencies in series solutions of the response of a Duffing oscillator. J. Sound. Vib. 169(2), 261–269 (1994)

    Article  Google Scholar 

  15. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal. Process. 20(3), 505–592 (2006)

    Article  Google Scholar 

  16. Ramlan, R., Brennan, M.J., Kovacic, I., Mace, B.R., Burrow, S.G.: Exploiting knowledge of jump-up and jump-down frequencies to determine the parameters of a Duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 37, 282–291 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lu, Z.Q., Hu, G.S., Ding, H., Chen, L.Q.: Jump-based estimation for nonlinear stiffness and damping parameters. J. Vib. Control 25(2), 325–335 (2019)

    Article  MathSciNet  Google Scholar 

  18. Feldman, M., Simon, B.: Nonlinear vibrating system identification via Hilbert decomposition. Mech. Syst. Signal. Process. 84, 65–96 (2017)

    Article  Google Scholar 

  19. Tang, J.S.: A method for parameter identification of strongly non-linear systems. J. Sound. Vib. 232(5), 993–996 (2000)

    Article  MathSciNet  Google Scholar 

  20. Malatkar, P., Nayfeh, A.H.: A parametric identification technique for single-degree-of-freedom weakly nonlinear systems with cubic nonlinearities. J. Vib. Control 9(3–4), 317–336 (2003)

    Article  Google Scholar 

  21. Yu, M.L., Hahn, E.J., Liu, J., Lu, Z.: A quasi-modal parameter based system identification procedure with non-proportional hysteretic damping. J. Sound. Vib. 382, 43–62 (2016)

    Article  Google Scholar 

  22. Yuan, Z.X., Liu, W.Q., Zhang, S., Zhu, Q., Hu, G.D.: Bandwidth broadening through stiffness merging using the nonlinear cantilever generator. Mech. Syst. Signal. Process. 132, 1–17 (2019)

    Article  Google Scholar 

  23. Rao, S.S.: Mechanical Vibrations. Addison Wesley, Boston (1995)

    Google Scholar 

  24. Zhou, S.X., Cao, J.Y., Inman, D.J., Lin, J., Li, D.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 1–13 (2016)

    Article  Google Scholar 

  25. Shen, Y.J., Wen, S.F., Li, X.H., Yang, S.P., Xing, H.J.: Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. Nonlinear Dyn. 85(3), 1457–1467 (2016)

    Article  MathSciNet  Google Scholar 

  26. Niu, J.C., Shen, Y.J., Yang, S., Li, S.: Higher-order approximate steady-state solutions for strongly nonlinear systems by the improved incremental harmonic balance method. J. Vib. Control 24(16), 3744–3757 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lai, S.K., Lim, C.W., Wu, B.S., Wang, C., Zeng, Q.C., He, X.F.: Newton–harmonic balancing approach for accurate solutions to nonlinear cubic–quintic Duffing oscillators. Appl. Math. Model. 33(2), 852–866 (2009)

    Article  MathSciNet  Google Scholar 

  28. Burton, T.D., Rahman, Z.: On the multi-scale analysis of strongly non-linear forced oscillators. Int. J. Nonlin. Mech. 21(2), 135–146 (1986)

    Article  Google Scholar 

  29. Chen, L.Q., Jiang, W.A.: Internal Resonance Energy Harvesting. J. Appl. Mech. 82, 031004 (2015)

    Article  Google Scholar 

  30. Perkins, E.: Effects of noise on the frequency response of the monostable Duffing oscillator. Phys. Lett. A 381(11), 1009–1013 (2017)

    Article  Google Scholar 

  31. Agarwal, V., Zheng, X., Balachandran, B.: Influence of noise on frequency responses of softening Duffing oscillators. Phys. Lett. A 382(46), 3355–3364 (2018)

    Article  MathSciNet  Google Scholar 

  32. Liu, Q.X., Liu, J.K., Chen, Y.M.: An analytical criterion for jump phenomena in fractional Duffing oscillators. Chaos. Soliton. Fract. 98, 216–219 (2017)

    Article  MathSciNet  Google Scholar 

  33. Liu, H.C., Lee, C.K., Kobayashi, T., Tay, C.J., Quan, C.: Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21(3), 035005 (2012)

    Article  Google Scholar 

  34. Yao, H.L., Cao, Y.B., Zhang, S.J., Wen, B.C.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94(3), 2265–2275 (2018)

    Article  Google Scholar 

  35. Liu, W.Q., Liu, C.Z., Li, X.Y., Zhu, Q., Hu, G.D.: Comparative study about the cantilever generators with different curve fixtures. J. Intell. Mater. Syst. Struct. 29(9), 1884–1899 (2018)

    Article  Google Scholar 

  36. Liu, W.Q., Liu, C.Z., Ren, B.Y., Zhu, Q., Hu, G.D., Yang, W.: Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator. Appl. Phys. Lett. 109(4), 043905 (2016)

    Article  Google Scholar 

Download references

Funding

The work was supported by the national NSFC (Natural Science Foundation of China) under Grants No. 51875488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Liu, W. & Ye, M. A mapping method of dynamic response and stiffness characteristics for realizing a customized nonlinear oscillator. Nonlinear Dyn 102, 2531–2548 (2020). https://doi.org/10.1007/s11071-020-06089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06089-1

Keywords

Navigation