Skip to main content
Log in

A unified concept of approximate and quasi efficient solutions and associated subdifferentials in multiobjective optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we introduce some new notions of quasi efficiency and quasi proper efficiency for multiobjective optimization problems that reduce to the most important concepts of approximate and quasi efficient solutions given up to now. We establish main properties and provide characterizations for these solutions by linear and nonlinear scalarizations. With the help of quasi efficient solutions, a generalized subdifferential of a vector mapping is introduced, which generates a number of approximate subdifferentials frequently used in optimization in a unifying way. The generalized subdifferential is related to the classical subdifferential of real functions by the method of scalarization. An application of generalized subdifferential to express optimality conditions for quasi efficient solutions is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Riahi, H.: Stability results for Ekeland’s \(\varepsilon \)-variational principle and cone extremal solutions. Math. Oper. Res. 18, 173–201 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Azimov, A.Y., Gasimov, R.N.: On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization. Int. J. Appl. Math. 1, 171–192 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Azimov, A.Y., Gasimov, R.N.: Stability and duality of nonconvex problems via augmented Lagrangian. Cybern. Syst. Anal. 38, 412–421 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problems via improvement sets. J. Optim. Theory. Appl. 150, 516–529 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Dinh, N., Mordukhovich, B., Nghia, T.T.A.: Subdifferentials of value functions and optimality conditions for DC and bilevel infinite and semi-infinite programs. Math. Program. Ser. B 123, 101–138 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Dutta, J.: Necessary optimality conditions and saddle points for approximate optimization in Banach spaces. TOP 13, 127–143 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (2014)

    MATH  Google Scholar 

  9. El Maghri, M.: Pareto–Fenchel \(\varepsilon \)-subdifferential sum rule and \(\varepsilon \)-efficiency. Optim. Lett. 6, 763–781 (2012)

    MathSciNet  MATH  Google Scholar 

  10. El Maghri, M., Laghdir, M.: Pareto subdifferential calculus for convex vector mappings and applications to vector optimization. SIAM J. Optim. 19, 1970–1994 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Gerstewitz, C., Iwanow, E.: Dualität für nichtkonvexe Vektoroptimierungsprobleme. Wiss. Z. Tech. Hochsch. Ilmenau 31, 61–81 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  13. Govil, M.G., Mehra, A.: \(\varepsilon \)-optimality for multiobjective programming on a Banach space. Eur. J. Oper. Res. 157, 106–112 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Gupta, D., Mehra, A.: Two types of approximate saddle points. Numer. Funct. Anal. Optim. 29, 532–550 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Proper approximate solutions and \(\varepsilon \)-subdifferentials in vector optimization: basic properties and limit behaviour. Nonlinear Anal. 79, 52–67 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Proper approximate solutions and \(\varepsilon \)-subdifferentials in vector optimization: Moreau–Rockafellar type theorems. J. Convex Anal. 21, 857–886 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Henig approximate proper efficiency and optimization problems with difference of vector mappings. J. Convex. Anal. 23, 661–690 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Gutiérrez, C., Huerga, L., Novo, V.: Nonlinear scalarization in multiobjective optimization with a polyhedral ordering cone. Int. Trans. Oper. Res. 25, 763–779 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Gutiérrez, C., Jiménez, B., Novo, V.: On approximate efficiency in multiobjective programming. Math. Methods Oper. Res. 64, 165–185 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Gutiérrez, C., Jiménez, B., Novo, V.: Improvement sets and vector optimization. Eur. J. Oper. Res. 223, 304–311 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Gutiérrez, C., Jiménez, B., Novo, V.: Optimality conditions for quasi-solutions of vector optimization problems. J. Optim. Theory Appl. 167, 796–820 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Gutiérrez, C., López, R., Novo, V.: Generalized \(\varepsilon \)-quasi-solutions in multiobjective optimization problems: existence results and optimality conditions. Nonlinear Anal. 72, 4331–4346 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hai, L.P., Huerga, L., Khanh, P.Q., Novo, V.: Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems. J. Glob. Optim. 74, 361–382 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Hamel, A.: An \(\varepsilon \)-Lagrange multiplier rule for a mathematical programming problem on Banach spaces. Optimization 49, 137–149 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Huang, X.X.: Optimality conditions and approximate optimality conditions in locally Lipschitz vector optimization. Optimization 51, 309–321 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2011)

    MATH  Google Scholar 

  28. Jofré, A., Luc, D.T., Théra, M.: \(\epsilon \)-subdifferential and \(\epsilon \)-monotonicity. Nonlinear Anal. 33, 71–90 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Kaliszewski, I.: Quantitative Pareto Analysis by Cone Separation Technique. Kluwer, Boston (1994)

    MATH  Google Scholar 

  30. Khan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization. An Introduction with Applications. Springer, Berlin (2015)

    MATH  Google Scholar 

  31. Kruger, A.Ya., Mordikhovich, B.S.: Extremal points and the Euler equation in nonsmooth optimization problems. Dokl. Akad. Nauk BSSR 24, 684–687 (1980)

    MathSciNet  MATH  Google Scholar 

  32. Küçük, Y., Atasever, I., Küçük, M.: Generalized weak subdifferentials. Optimization 60, 537–552 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Kutateladze, S.S.: Convex \(\varepsilon \)-programming. Sov. Math. Dokl. 20, 391–393 (1979)

    MATH  Google Scholar 

  34. Liu, J.C.: \(\varepsilon \)-duality theorem of nondifferentiable nonconvex multiobjective programming. J. Optim. Theory Appl. 69, 153–167 (1991)

    MathSciNet  Google Scholar 

  35. Loridan, P.: \(\varepsilon \)-solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984)

    MathSciNet  MATH  Google Scholar 

  36. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Math. Systems 319, Springer, Berlin (1989)

  37. Luc, D.T., Ngai, D.T., Théra, M.: Approximate convex functions. J. Nonlinear Convex Anal. 1, 155–176 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Mordukhovich, B.S., Wang, B.: Necessary suboptimality and optimality conditions via variational principles. SIAM J. Control Optim. 41, 623–640 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Ngai, H.V., Luc, D.T., Théra, M.: Extensions of Fréchet \(\varepsilon \)-subdifferential calculus and applications. J. Math. Anal. Appl. 268, 266–290 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Penot, J.P.: Radiant and coradiant dualities. Pac. J. Optim. 6, 263–279 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  42. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  43. Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Zaffaroni, A.: Convex coradiant sets with a continuous concave cogauge. J. Convex Anal. 15, 325–343 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work, for the first, second and fourth authors, was partially supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) under project PGC2018-096899-B-I00 (MCIU/AEI/FEDER, UE), and also by ETSI Industriales, Universidad Nacional de Educación a Distancia (Spain) under Grant 2020-Mat09. The third author thanks his coauthors for invitation to joint the work and for their hospitality during his visit to the Department of Applied Mathematics at UNED, Madrid. The authors are very grateful to the referees for their useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Novo.

Additional information

Dedicated to Marco A. López on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huerga, L., Jiménez, B., Luc, D.T. et al. A unified concept of approximate and quasi efficient solutions and associated subdifferentials in multiobjective optimization. Math. Program. 189, 379–407 (2021). https://doi.org/10.1007/s10107-020-01597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01597-9

Keywords

Mathematics Subject Classification

Navigation