Skip to main content
Log in

Jet impingement heat transfer within a hemisphere

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Jet impingement heat transfer finds applications where a large heat flux is required between a fluid and a surface. Impinging jets can be implemented in Concentrating Solar Power (CSP) thermal receivers and bayonet tube heat exchangers. A simultaneous outlook on the heat transfer and total pressure loss (performance) characteristics of several jets impinging on a concave hemispherical surface are investigated experimentally and using an axisymmetric Reynolds averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) model. The four equation Transition SST RANS turbulence CFD model demonstrates to be most suitable for this domain with a mean absolute deviation from the experimental results of < 7% for the heat transfer coefficient and < 8% for the total pressure loss. Empirical correlations for the Nusselt number as a function of the nozzle outlet Reynolds number and Prandtl number are fitted. Relatively good agreement is found between the Nusselt correlation and existing literature. An empirical correlation is also presented for the total pressure loss factor for the jet impingement domain in general because it is found that the dominating total pressure loss occurs because of rapid expansion, which occurs in any impinging free jet. The developed empirical correlations and CFD model can be used to estimate the heat transfer and pressure loss characteristics of a bayonet tube heat exchanger, a solar thermal receiver employing impinging jets as well as other jet impingement domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. This pipe has a diameter of 25 mm and is 399 mm long.

Abbreviations

A :

Area (m2)

d :

Nozzle diameter (m)

D :

Impingement surface diameter (m)

f d :

Darcy friction factor (-)

h :

Heat transfer coefficient (W/(m2 K))

k :

Thermal conductivity (W/(m K))

k :

Turbulence kinetic energy (m2/s2)

L :

Jet to impingement surface distance (m)

\(\dot {m}\) :

Mass flow rate (kg/s)

N u :

Nusselt number (-)

p :

Pressure (Pa)

P r :

Prandtl number (-)

\(\dot {Q}\) :

Heat rate (W)

\(\dot {q}\) :

Heat flux (W/m2)

r :

Surface radius from stagnation point (m)

R e :

Reynolds number (-)

T :

Temperature (°C)

TI :

Turbulence intensity (-)

u :

Velocity (m/s)

y + :

Dimensionless distance from a wall (-)

ε :

Roughness constant (-)

μ :

Dynamic viscosity (kg/(m s))

ξ :

Loss coefficient (-)

ρ :

Density (kg/m3)

ω :

Specific turbulence dissipation rate (1/s)

al:

Aluminium

cond:

Condensation

dyn:

Dynamic

exp:

Expansion

es:

Exterior heat transfer surface

fg:

Latent heat

is:

Interior heat transfer surface

l:

Liquid

n:

Nozzle

sat:

Saturation

sph:

Sphere

t:

Total

tc:

Total, component

v:

Vapour

References

  1. Alzoubi MA, Sasmito AP (2017) Thermal performance optimization of a bayonet tube heat exchanger. Appl Therm Eng 111:232. https://doi.org/10.1016/j.applthermaleng.2016.09.052

    Article  Google Scholar 

  2. Ma T, Zeng M, Ji Y, Zhu H, Wang Q (2011) Investigation of a novel bayonet tube high temperature heat exchanger with inner and outer fins. Int J Hydrogen Energy 36(5):3757. https://doi.org/10.1016/j.ijhydene.2010.12.039

    Article  Google Scholar 

  3. Damiani L, Montecucco M, Prato AP (2013) Conceptual design of a bayonet-tube steam generator for the ALFRED lead-cooled reactor. Nucl Eng Des 265:154. https://doi.org/10.1016/j.nucengdes.2013.06.021

    Article  Google Scholar 

  4. Han B, Goldstein RJ (2001) Jet-impingement heat transfer in gas turbine systems. Ann N Y Acad Sci 934:147. https://doi.org/10.1111/j.1749-6632.2001.tb05849.x

    Article  Google Scholar 

  5. Kröger DG (2008) Spiky Central Receiver Air Pre-heater (SCRAP). Tech. rep., Stellenbosch University

  6. Lubkoll M, Erasmus DJ, Harms TM, Von Backström TW, Kröger DG (2020) Performance characteristics of the Spiky Central Receiver Air Pre-heater (SCRAP). Sol Energy 201:773. https://doi.org/10.1016/j.solener.2020.03.027

    Article  Google Scholar 

  7. Wang W, Laumert B, Xu H, Strand T (2015) Conjugate heat transfer analysis of an impinging receiver design for a dish-Brayton system. Sol Energy 119:298. https://doi.org/10.1016/j.solener.2015.07.013

    Article  Google Scholar 

  8. Li L (2014) Numerical study of surface heat transfer enhancement in an impinging solar receiver. Master’s thesis, Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-237365

  9. Wang W, Laumert B (2018) An axial type impinging receiver. Energy 162:318. https://doi.org/10.1016/j.energy.2018.08.036

    Article  Google Scholar 

  10. Garbrecht O (2012) Solarturmkraftwerk-Solarempfänger. http://www.google.com/patents/EP2520872A1?cl=en

  11. Goldstein R, Behbahani A, Heppelmann K (1986) Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet. Int J Heat Mass Transf 29(8):1227. https://doi.org/10.1016/0017-9310(86)90155-9

    Article  Google Scholar 

  12. Lee DH, Chung YS, Won SY (1999) The effect of concave surface curvature on heat transfer from a fully developed round impinging jet. Int J Heat Mass Transf 42(13):2489. https://doi.org/10.1016/S0017-9310(98)00318-4

    Article  Google Scholar 

  13. Craig KJ, Slootweg M, Meyer JP, Robbins JC, Kotzé R, Honiball NJM, Grobler E, Oosthuizen TJ, Winterbach W (2018) CFD Simulation of solar receiver jet impingement heat transfer: RANS vs LES. In 16th International heat transfer conference, 23262, pp 1971–1978 https://doi.org/10.1615/IHTC16.cms.023262

  14. Uddin N, Neumann SO, Weigand B (2013) LES simulations of an impinging jet: On the origin of the second peak in the Nusselt number distribution. Int J Heat Mass Transf 57(1):356. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.052

    Article  Google Scholar 

  15. Grenson P, Deniau H (2017) Large-Eddy simulation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number. Int J Heat Fluid Flow 68:348. https://doi.org/10.1016/j.ijheatfluidflow.2017.09.014

    Article  Google Scholar 

  16. Achari AM, Das MK (2015) Application of various RANS based models towards predicting turbulent slot jet impingement. Int J Therm Sci 98:332. https://doi.org/10.1016/j.ijthermalsci.2015.07.018

    Article  Google Scholar 

  17. Issac J, Singh D, Kango S (2020) Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate. Heat Mass Transf 56 (2):531. https://doi.org/10.1007/s00231-019-02724-9

    Article  Google Scholar 

  18. McDougall D (2019) Numerical simulation of jet impingement cooling of the inside of a hemisphere with application to SCRAP. Master’s thesis, Stellenbosch University. http://hdl.handle.net/10019.1/106154

  19. VDI (2010) VDI-Wärmeatlas, 10th edn. VDI-Verlag, Duesseldorf

    Google Scholar 

  20. Çengel YA, Ghajar AJ (2011) Heat and mass transfer: Fundamentals and applications, 4th edn. McGraw-Hill Inc., New York

    Google Scholar 

  21. Kröger DG (2004) Air-cooled heat exchangers and cooling towers, 1st edn. University of Stellenbosch

  22. Çengel Y., Cymbala J (2014) Fluid mechanics fundamentals and applications, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  23. Taylor J (1997) An introduction to error analysis: The study of uncertainties in physical measurement, 2nd edn. University Science Books, USA

    Google Scholar 

  24. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London Series A 186:123. https://doi.org/10.1098/rsta.1895.0004

    Article  MATH  Google Scholar 

  25. Menter FR (1993) Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906. https://ntrs.nasa.gov/search.jsp?R=19960044572

  26. Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47(12):2894. https://doi.org/10.2514/1.42362

    Article  Google Scholar 

  27. Versteeg H, Malalasekera W (2007) An introduction to computational fluid dynamics, 2nd edn. Pearson, Glasgow

    Google Scholar 

  28. Schlünder EU, Gnielinski V (1967) Wärme- und Stoffübertragung zwischen Gut und aufprallendem Düsenstrahl. Chemie Ingenieur Technik 39(9-10):578. https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.330390915

    Article  Google Scholar 

  29. Goldstein RJ, Seol W (1991) Heat transfer to a row of impinging circular air jets including the effect of entrainment. Int J Heat Mass Transf 34(8):2133. https://doi.org/10.1016/0017-9310(91)90223-2

    Article  Google Scholar 

  30. Bunker RS, Metzger DE (1990) Local heat transfer in internally cooled turbine airfoil leading edge regions: Part I – Impingement cooling without film coolant extraction. J Turbomach 112(3):451. https://doi.org/10.1115/1.2927680

    Article  Google Scholar 

  31. Chupp RE, Helms HE, Mcfadden PW, Brown TR (1969) Evaluation of internal heat-transfer coefficients for impingement-cooled turbine airfoils. J Aircr 6(3):203. https://doi.org/10.2514/3.44036

    Article  Google Scholar 

  32. Fives North American Combustion Inc. (2001) North American Combustion Handbook. https://doi.org/https://app.knovel.com/hotlink/toc/id:kpCHVIE001/north-american-combustion/north-american-combustion, 3rd edn. Fives North American Combustion, Inc., Cleveland, p 85

  33. Mikron Instrument Company (2003) Table of emissivity of various surfaces (Mikron Instrument Company Inc). https://doi.org/http://www-eng.lbl.gov/dw/projects/DW4229_LHC_detector_analysis/calculations/emissivity2.pdf

  34. Çengel Y. A., Boles MA (2014) Thermodynamics: An engineering approach, 8th edn. McGraw-Hill Education, New York

    Google Scholar 

  35. White FM (2006) Viscous fluid flow, vol 3, 3rd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ken Craig, Mr. Jesse Quick and Mr. David McDougall for their advice on CFD modelling. The support of the Solar Thermal Energy Research Group (STERG) is appreciated. The assistance and guidance of the Mechanical and Mechatronic Engineering workshop is also appreciated. The value of the HPC1 (Rhasatsha) high performance computer at the University of Stellenbosch is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derwalt J. Erasmus.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erasmus, D.J., Lubkoll, M. & Backström, T.W.v. Jet impingement heat transfer within a hemisphere. Heat Mass Transfer 57, 931–948 (2021). https://doi.org/10.1007/s00231-020-02977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02977-9

Keywords

Navigation