Skip to main content
Log in

Transition of shear flow for granular materials in a numerical ring shear test

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The shear flow behaviors of granular materials exist widely in natural events. Ring shear tests based on the discrete element method were carried out to study the effects of shearing rate on the transition of quasi-static and slow flow phases of granular materials. The simulated results indicated that the shear stress and normalized volume increase linearly with the square of the shearing rate, and the two corresponding critical shearing rates are the same. Through the analysis of the μeff (I) rheology model, the micro-mechanism of the transition between the quasi-static and slow flow phase has been discussed quantitatively. Additionally, the critical shearing rate under different normal stress and rolling resistance friction coefficient were tested. It is found that the critical shearing rate augments with the increase in normal stress. However, it does not change with the increase of the rolling resistance friction coefficient of granular materials. The above work on the flow phase transition of granular materials can be helpful to study the mechanism of the starting stage of geological disasters, such as landslides and debris flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hutter, K., Rajagopal, K.R.: Thermodynamics on flows of granular materials. Continnum Mechanics and Thermodynamics 6(2), 81–139 (1994)

    Article  ADS  Google Scholar 

  2. Ambrose, R.P., Jan, S., Siliveru, K.: A review on flow characterization methods for cereal grain-based powders. J. Sci. Food Agric. 96(2), 359–364 (2016). https://doi.org/10.1002/jsfa.7305

    Article  Google Scholar 

  3. Friedmann, S.J., Taberlet, N., Losert, W.: Rock-avalanche dynamics: insights from granular physics experiments. Int. J. Earth Sci. 95(5), 911–919 (2006). https://doi.org/10.1007/s00531-006-0067-9

    Article  Google Scholar 

  4. Cercignani, C.: Shear flow of a granular material. Journal of Statical Physics 102(5–6), 1407–1415 (2001)

    Article  MathSciNet  Google Scholar 

  5. Savage, S.B., Jeffrey, D.J.: The stress tensor in a granular flow at high shearing rates. J. Fluid Mech. 110, 255–272 (2006). https://doi.org/10.1017/s0022112081000736

    Article  ADS  MATH  Google Scholar 

  6. Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997). https://doi.org/10.1029/97rg00426

    Article  ADS  Google Scholar 

  7. Melosh, H.J.: The physics of very large landslides. Acta Mech. 64(1–2), 89–99 (1986)

    Article  Google Scholar 

  8. Pastor, M., Fernández Merodo, J.A., Haddad, B., Manzanal, D., Mira, P., Herreros, I., Drempetic, V.: Modelling of fluidized geomaterials: application to fast landslides. Journal of Theoretical and Applied Mechanics 38(1–2), 101–134 (2008)

    MathSciNet  Google Scholar 

  9. Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225(1160), 49–63 (1954)

    Article  ADS  Google Scholar 

  10. Forterre, Y., Pouliquen, O.: Flows of Dense Granular Media. Annual Review Fluid Mechanics 40(1), 1–24 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102142

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Tardos, G.I., Khan, M.I.: Schaeffer DGJPoF: Forces on a slowly rotating, rough cylinder in a Couette device containing a dry. Frictional powder. 10(2), 335–341 (1998)

    Google Scholar 

  12. Savage, S.B., Sayed, M.: Stresses developed by dry cohesionless granular-materials sheared in an annular shear cell. J. Fluid Mech. 142(MAY), 391–430 (1984). https://doi.org/10.1017/s0022112084001166

    Article  ADS  Google Scholar 

  13. Ji, S.Y., Sun, S.S., Chen, X.D.: Shear cell test on transition of shear flow states of granular materials. Chinese Journal of Theoretical and Applied Mechanics 48(5), 1061–1072 (2016). https://doi.org/10.6052/0459-1879-16-049

    Article  Google Scholar 

  14. Zhang, M., McSaveney, M.J.: Rock avalanche deposits store quantitative evidence on internal shear during runout. Geophys. Res. Lett. 44(17), 8814–8821 (2017). https://doi.org/10.1002/2017gl073774

    Article  ADS  Google Scholar 

  15. Ji, S., Hanes, D.M., Shen, H.H.: Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell. Mechanical of Material 41(6), 764–776 (2009). https://doi.org/10.1016/j.mechmat.2009.01.029

    Article  Google Scholar 

  16. Wang, X., Zhu, H.P., Luding, S., Yu, A.B.: Regime transitions of granular flow in a shear cell: A micromechanical study. Phys. Rev. E (2013). https://doi.org/10.1103/PhysRevE.88.032203

    Article  Google Scholar 

  17. Gao, Y.: Quantitative simulation on powder shear flow using discrete element method. Journal of Pharmaceutical Innovation 13(4), 330–340 (2018). https://doi.org/10.1007/s12247-018-9324-2

    Article  ADS  Google Scholar 

  18. Guo, Y., Buettner, K., Lane, V., Wassgren, C., Ketterhagen, W., Hancock, B., Curtis, J.: Computational and experimental studies of flexible fiber flows in a normal-stress-fixed shear cell. AIChE J. 65(1), 64–74 (2019). https://doi.org/10.1002/aic.16397

    Article  Google Scholar 

  19. Louati, H., Bednarek, X., Martin, S., Ndiaye, A., Bonnefoy, O.: Qualitative and quantitative DEM analysis of cohesive granular material behaviour in FT4 shear tester. Chemical Engineering Research Design. 148, 155–163 (2019). https://doi.org/10.1016/j.cherd.2019.05.059

    Article  Google Scholar 

  20. Luding S (2006) Comparison of Ring shear cell simulations in 2d/3d with experiments. In: Proceedings of World Congress Particle Technology.

  21. Hsiau, S.S., Jang, H.W.: Measurements of velocity fluctuations of granular materials in a shear cell. Exp. Thermal Fluid Sci. 17(3), 202–209 (1998)

    Article  Google Scholar 

  22. Ladipo, D., Puri VJPt, : Computer controlled shear cell for measurement of flow properties of particulate materials. Power Technology 92(2), 135–146 (1997)

    Article  Google Scholar 

  23. Qin H (2000). Flow behavior of granular materials: quasi-static to inertial transition. University of Florida.

  24. Tsai, J.C., Gollub, J.P.: Slowly sheared dense granular flows: crystallization and nonunique final states. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 70(3 Pt 1), 031303 (2004). https://doi.org/10.1103/PhysRevE.70.031303

    Article  Google Scholar 

  25. Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  26. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechnanics 124(3), 285–292 (1998)

    Article  Google Scholar 

  27. Jiang, M.J., Shi, A.N., Liu, J., Zhang, F.G.: Three-dimensional distinct element analysis of mechanical properties of structured sands. Chinese Journal of Geotechnical Engineering 41(S2), 1–4 (2019). https://doi.org/10.11779/CJGE2019S2001

    Article  Google Scholar 

  28. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012). https://doi.org/10.1016/j.powtec.2011.10.057

    Article  Google Scholar 

  29. Ji, S.Y.: The quasi-solid-liquid phase transition of non-uniform granular materials and their constitutive equation. Chinese Journal of The oretical and Applied Mechanics 39(2), 223–237 (2007)

    Google Scholar 

  30. Miller, B., O'Hern, C., Behringer, R.P.: Stress fluctuations for continuously sheared granular materials. Physical. Review. Letter. 77(15), 3110 (1996)

    Article  ADS  Google Scholar 

  31. Baker, J.L., Barker, T., Gray, J.M.N.T.: A two-dimensional depth-averaged mu(I)-rheology for dense granular avalanches. J. Fluid Mech. 787, 367–395 (2016). https://doi.org/10.1017/jfm.2015.684

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Clark, A.H., Kondic, L., Behringer, R.P.: Steady flow dynamics during granular impact. Phys. Rev. E 93(5), 050901 (2016)

    Article  ADS  Google Scholar 

  33. Zhang, Z., Cui, Y., Chan, D.H., Taslagyan, K.A.: DEM simulation of shear vibrational fluidization of granular material. Granular Matter (2018). https://doi.org/10.1007/s10035-018-0844-8

    Article  Google Scholar 

  34. Zhao, S., Zhou, X., Liu, W.: Discrete element simulations of direct shear tests with particle angularity effect. Granular Matter 17(6), 793–806 (2015). https://doi.org/10.1007/s10035-015-0593-x

    Article  Google Scholar 

  35. MiDi, G.D.R.: On dense granular flows. The European Physical Journal E 14, 341–365 (2004)

    Article  ADS  Google Scholar 

  36. Da Cruz, F., Emam, S., Prochnow, M., et al.: Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  37. Huang, X., O'Sullivan, C., Hanley, K.J., Kwok, C.-Y.: Partition of the contact force network obtained in discrete element simulations of element tests. Computational Particle Mechanics 4(2), 145–152 (2017). https://doi.org/10.1007/s40571-015-0095-y

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20030301) and National Natural Science Foundation (41790432, 41761144077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Su.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Su, L., Zhang, C. et al. Transition of shear flow for granular materials in a numerical ring shear test. Granular Matter 23, 2 (2021). https://doi.org/10.1007/s10035-020-01062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01062-6

Keywords

Navigation