Skip to main content
Log in

3D DEM analysis of soil excavation test on lunar regolith simulant

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

To validate the application of three-dimensional (3D) discrete element method (DEM) on modeling the excavation process, a discrete analogue of lunar regolith simulant is excavated under terrestrial conditions using DEM and the results were compared with the previous experimental data using TJ-1 lunar soil simulant. The soil failure mechanism is first described at different scales, with detailed DEM studies of excavation force, earth pressure, soil heap, void ratio changes, APR (average micro-pure rotation rate) field, particle displacements and velocities. Following these, the effects of cutting depth, cutting angle, blade width on the excavation force and size of the affected zone are analyzed and compared with the experimental data. The results illustrate that a “real-time” affected zone can be identified from the APR field and particle velocities which fluctuate significantly in a similar tendency to the excavation force at the post-peak stage. In contract, a “cumulative” affected zone can be identified from the void ratio and particle displacements, which remain increasing gradually at the post-peak stage and invariable when the excavation displacement is large enough to allow a stable soil heap to form. In addition, the simulation results can capture the effects of cutting depth, cutting angle and blade width, which reveals the validity of the numerical modeling approach and thus further studies on the effects of lunar environments on soil excavation can be carried out using DEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Godwin, R.J., Spoor, G.: Soil failure with narrow tines. J. Agric. Eng. Res. 22(3), 213–228 (1977)

    Google Scholar 

  2. Patel, B.P., Prajapati, D.J.M.: Soil-Tool Interaction as a review for digging operation of mini hydraulic excavator. Int. J. Eng. Sci. Technol. 3(2), 894–901 (2011)

    Google Scholar 

  3. Hettiaratchi, D.R.P., Reece, A.R.: Symmetrical three-dimensional soil failure. J. Terrramech. 4(3), 45–67 (1967)

    Google Scholar 

  4. Kuczewski, J., Piotrowska, E.: An improved model for forces on narrow soil cutting tines. Soil and Tillage Res. 46(3), 231–239 (1998)

    Google Scholar 

  5. Bromwell, L.G.: The friction of quartz in high vacuum. Res. In: Earth Physics Phase Rep. No. 7, R66–18, Dept. of Civ. Engrg, Massachusetts Institute of Technology, Cambridge (1966)

  6. Nelson, J.D.: Environmental effects on engineering properties of simulated lunar soils. Ph.D. thesis, Illinois Institute of Technology, Chicago (1967)

  7. Boles, W.W., Scott, W.D., Connolly, J.F.: Excavation resistances in reduced gravity environment. J. Aerosp Eng. 10(2), 99–103 (1997)

    Google Scholar 

  8. Boles, W.W., Connolly, J.F.: Lunar excavation research. Engineering, Construction, and Operations in Space V, pp. 1903–1906 (1996)

  9. Abo-Elnor, M., Hamilton, R., Boyle, J.T.: 3D Dynamic analysis of soil–tool interaction using the finite element method. J. Terrramech. 40(1), 51–62 (2003)

    Google Scholar 

  10. Abo-Elnor, M., Hamilton, R., Boyle, J.T.: Simulation of soil–blade interaction for sandy soil using advanced 3D finite element analysis. Soil Tillage Res. 75(1), 61–73 (2004)

    Google Scholar 

  11. Zhong, J., Zhang, X., Jiang, J. D.: Study of soil-blade interaction based on finite element method and classical theory. Advanced Technology of Design and Manufacture (ATDM 2010), International Conference on, IET (2010).

  12. Zhang, L.B., Cai, Z.X., Liu, H.F.: A novel approach for simulation of soil-tool interaction based on an arbitrary Lagrangian-Eulerian description. Soil Tillage Res. 178, 41–49 (2018)

    Google Scholar 

  13. Cundall, P.A., Strack, O.D.L.: A distinct numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Google Scholar 

  14. Jiang, M.J., He, J., Wang, J.F., Liu, F., Zhang, W.C.: Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill. Granular Matter 16(5), 797–814 (2014)

    Google Scholar 

  15. Jiang, M.J., Dai, Y.S., Cui, L., Shen, Z.F., Wang, X.X.: Investigating mechanism of inclined CPT in granular ground using DEM. Granular Matter 16(5), 785–796 (2014)

    Google Scholar 

  16. Jiang, M.J., Shen, Z.F., Zhu, F.Y.: Numerical analyses of braced excavation in granular grounds: continuum and discrete element approaches. Granular Matter 15(2), 195–208 (2013)

    Google Scholar 

  17. Coetzee, C.J., Els, D.N.J.: Calibration of granular material parameters for DEM modelling and numerical verification by blade–granular material interaction. J. Terramech. 46(1), 15–26 (2009a)

    Google Scholar 

  18. Coetzee, C.J., Els, D.N.J.: The numerical modelling of excavator bucket filling using DEM. J. Terrramech. 46(5), 217–227 (2009b)

    Google Scholar 

  19. Asaf, Z., Rubinstein, D., Shmulevich, I.: Determination of discrete element model parameters required for soil tillage. Soil Tillage Res. 92(1), 227–242 (2007)

    Google Scholar 

  20. Bui, H.H., Kobayashi, T., Fukagawa, R., Wells, J.C.: Numerical and experimental studies of gravity effect on the mechanism of lunar excavations. J. Terrramech. 46(3), 115–124 (2009)

    Google Scholar 

  21. Ucgul, M., Saunders, C., Fielke, J.M.: Comparison of the discrete element and finite element methods to model the interaction of soil and tool cutting edge. Biosys. Eng. 169, 199–208 (2018)

    Google Scholar 

  22. Shmulevich, I.: State of the art modelling of soil–tillage interaction using discrete element method. Soil Tillage Res. 111(1), 41–53 (2010)

    Google Scholar 

  23. Obermayr, M., Dressler, K., Vrettos, C., Eberhard, P.: Prediction of draft forces in cohesionless soil with the Discrete Element Method. J. Terrramech. 48(5), 347–358 (2011)

    Google Scholar 

  24. Shmulevich, I., Asaf, Z., Rubinstein, D.: Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res. 97(1), 37–50 (2007)

    Google Scholar 

  25. Mak, J., Chen, Y., Sadek, M.A.: Determining parameters of a discrete element model for soil–tool interaction. Soil Tillage Res. 118, 117–122 (2012)

    Google Scholar 

  26. Chen, Y., Munkholm, L.J., Nyord, T.: A discrete element model for soil–sweep interaction in three different soils. Soil Tillage Res. 126, 34–41 (2013)

    Google Scholar 

  27. Tamás, K., Jóri, I.J., Mouazen, A.M.: Modelling soil–sweep interaction with discrete element method. Soil Tillage Res. 134(8), 223–231 (2013)

    Google Scholar 

  28. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Google Scholar 

  29. Jiang, M.J., Shen, Z.F., Wang, J.F.: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Comput. Geotech. 65, 147–163 (2015)

    Google Scholar 

  30. King, R.H., Van Susante, P., Gefreh, M.A.: Analytical models and laboratory measurements of the soil–tool interaction force to push a narrow tool through jsc-1a lunar simulant and ottawa sand at different cutting depths. J. Terrramech. 48(1), 85–95 (2011)

    Google Scholar 

  31. Green, A., Zacny, K., Pestana, J., Lieu, D., Mueller, R.: Investigating the effects of percussion on excavation forces. J. Aerosp. Eng. 26(1), 87–96 (2012)

    Google Scholar 

  32. Agui, J.H., Wilkinson, R.A.: Granular flow and dynamics of lunar simulants in excavating implements. In: Workshop on Biennial International Conference on Engineering, pp. 84–94 (2010)

  33. Xi, B.L., Jiang, M.J., Cui, L., Liu, J., Lei, H.Y.: Experimental verification on analytical models of lunar excavation. J. Terrramech. 83, 1–13 (2019)

    Google Scholar 

  34. Jiang, M.J., Li, L.Q., Sun, Y.G.: Properties of tj-1 lunar soil simulant. J. Aerosp. Eng. 25(3), 463–469 (2012)

    Google Scholar 

  35. Jiang, M.J., Xi, B.L., Shen, Z.F., Dai, Y.S.: DEM analyses of soil cutting test in lunar ground. Earth Space 2014, 95–104 (2014)

    Google Scholar 

  36. Lee, S.J., Hashash, Y.M.A., Wilkinson, R.A., Agui, J.H.: Simulation of experimental tests on the jsc-1a lunar soil simulant with polyhedral discrete elements. In: The Workshop on Biennial International Conference on Engineering: 208–216 (2010)

  37. Hopkins, M. A., Knuth, M. A., Green, A.: Discrete Element Method simulations of digging in JSC-1a. In: The Workshop on Thirteenth Asce Aerospace Division Conference on Engineering, (2012)

  38. Jiang, M.J., Shen, Z.F., Thornton, C.: Microscopic contact model of lunar regolith for high efficiency discrete element analyses. Comput. Geotech. 54, 104–116 (2013)

    Google Scholar 

  39. Kwok, C.Y., Bolton, M.D.: DEM simulations of thermally activated creep in soils. Géotechnique 60(6), 425–433 (2010)

    Google Scholar 

  40. Jiang, M.J., Xi, B.L., Arroyo, M., Rodriguez-Dono, A.: DEM simulation of soil-tool interaction under extraterrestrial environmental effects. J. Terrramech. 71, 1–13 (2017)

    Google Scholar 

  41. Jiang, M.J., Dai, Y.S., Cui, L., Xi, B.L.: Experimental and DEM analyses on wheel-soil interaction. J. Terrramech. 76, 15–28 (2017)

    Google Scholar 

  42. Jaffe, L.D.: Shear strength of lunar soil from oceanus procellarum. Earth Moon Planets 8(1–2), 58–72 (1973)

    Google Scholar 

  43. Scott, R.F.: Failure. Geotechnique 37(4), 423–66 (1987)

    Google Scholar 

  44. Li, L.Q., Experimental investigation and DEM analysis on non-coaxial micromechanism of sands. Ph.D. thesis, Tongji University, Shanghai (2012)

  45. Arslan, H., Batiste, S., Sture, S.: Engineering properties of lunar soil simulant jsc-1a. J. Aerosp. Eng. 23(1), 70–83 (2010)

    Google Scholar 

  46. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Google Scholar 

  47. Wang, J.F., Zhao, B.D.: Discrete-continuum analysis of monotonic pile penetration in crushable sands. Can. Geotech. J. 51(10), 1095–1110 (2014)

    Google Scholar 

  48. Su, L., Wang, J.F.: Depth-independent cone penetration mechanism by a discrete element method (dem)-based stress normalization approach. Can. Geotech. J. 53(5), 871–883 (2016)

    Google Scholar 

  49. Kobayashi, T., Ochiai, H., Fukagawa, R., Aoki, S., Tamoi, K.: A proposal for estimating strength parameters of lunar surface from soil cutting resistances. Earth and Space, (2006)

  50. Fang, Y.S., Ho, Y.C., Chen, T.J.: Passive earth pressure with critical state concept. J. Geotech. Geoenviron. Eng. 128(8), 651–659 (2002)

    Google Scholar 

  51. Jiang, M.J., Harris, D., Yu, H.S.: Kinematic models for non-coaxial granular materials Part I theories. Int. J. Numer. Anal. Methods Geomech 29(7), 643–661 (2005)

    MATH  Google Scholar 

  52. Godwin, R., O’Dogherty, M.J., Saunders, C., Balafoutis, A.T.: A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties, plough geometric factors and ploughing speed. Biosys. Eng. 97(1), 117–129 (2007)

    Google Scholar 

Download references

Acknowledgements

The research was funded by National Nature Science Foundation of China with Grant Nos.51639008 and 51890911, which are sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, B., Jiang, M. & Cui, L. 3D DEM analysis of soil excavation test on lunar regolith simulant. Granular Matter 23, 1 (2021). https://doi.org/10.1007/s10035-020-01070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01070-6

Keywords

Navigation