Skip to main content
Log in

Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano, Kamchatka

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic enclaves preserve a record of deep differentiation of primitive magmas in arc settings. We analyze the petrology and geochemistry of mafic enclaves from Shiveluch volcano in the Kamchatka peninsula to determine the differentiation histories of primitive magmas and to estimate their pressures, temperatures, and water contents. Amphibole inclusions in high forsterite olivine suggest that the primitive melt was superhydrous (i.e., > 8 wt% H2O) and was fractionating amphibole and olivine early on its liquid line of descent. We find that the hydrous primitive melt had liquidus temperatures of 1062 ± 48 °C and crystallized high Mg# amphibole at depths of 23.6–28.8 km and water contents of 10–14 wt% H2O. The major and trace element whole-rock chemistry of enclaves and of published analyses of andesites suggest that they are related through fractionation of amphibole-bearing assemblages. Quantitative models fractionating olivine, clinopyroxene, and amphibole reproduce geochemical trends defined by enclaves and andesites in variation diagrams. These models estimate 0.2–12.2% amphibole fractionated from the melt to reproduce the full range of enclave compositions, which overlaps with estimates of the amount of amphibole fractionated from parental melts based on whole-rock dysprosium contents. This contribution extends the published model of shallow processes at Shiveluch to greater depths. It provides evidence that primitive magmas feeding arc volcanoes may be more hydrous than estimated from other methods, and that amphibole is an important early fractionating phase on the liquid line of descent of superhydrous, primitive mantle-derived melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 
Fig. 2
Fig.  3.
Fig. 4 
Fig. 5 
Fig. 6.
Fig. 7 
Fig. 8
Fig. 9
Fig. 10 
Fig. 11 
Fig. 12
Fig. 13

Similar content being viewed by others

Code availability

Matlab codes used for quantitative fractionation modeling and compositional correction of enclaves is available on request.

References

  • Adam J (1988) Dry, hydrous, and CO2-bearing liquidus phase relationships in the CMAS system at 28 Kb and their bearing on the origin of alkali basalts. J Geol 96(6):709–719

    Google Scholar 

  • Alonso-Perez R, Muntener O, Ulmer P (2008) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558

    Google Scholar 

  • Armstrong JT, Donovan JJ, Carpenter PC (2013) CALCZAF, TRYZAF and CITZAF: the use of multi-correction-algorithm programs for estimating uncertainties and improving quantitative X-ray analysis of difficult specimens. Microsc Microanal 19(Suppl 2):812–813

    Google Scholar 

  • Asafov EV, Sobolev AV, Gurenko AA et al (2018) Belingwe komatiites (2.7 Ga) originate from a plume with moderate water content, as inferred from inclusions in olivine. Chem Geol 478:39–59

    Google Scholar 

  • Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-d18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157:209

    Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91(B6):6091–6112

    Google Scholar 

  • Baker MB, Grove TL, Price R (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Mineral Petrol 118(2):111–129

    Google Scholar 

  • Barlow R (2006) Asymmetric statistical errors: statistical problems in particle physics. Astrophys Cosmol 56–59

  • Batanova VG, Sobolev AV, Kuzmin DV (2015) Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem Geol 419:149–157

    Google Scholar 

  • Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4:3

  • Blatter DL, Carmichael ISE (2000) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? Geochim Cosmochim Acta 65(21):4043–4065

    Google Scholar 

  • Blatter DL, Sisson TW, Hankins B (2017) Voluminous arc dacites as amphibole reaction-boundary liquids. Contrib Mineral Petrol 172:27

    Google Scholar 

  • Bloomer SH, Taylor B, Macleod CJ, Stern RJ, Fryer P, Hawkins JW, Johnson L (1995) Early arc volcanism and the ophiolite problem: a perspective from drilling in the Western Pacific. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. American Geophysical Union Geophysical Monograph, Washington DC, vol. 88, pp. 1–26

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290(3–4):289–301

    Google Scholar 

  • Bonev N, Stampfli G (2009) Gabbro, plagiogranite and associated dykes in the supra-subduction zone Evros Ophiolites, NE Greece. Geol Mag 146(1):72–91

    Google Scholar 

  • Botazzi P, Tiepolo M, Vanucci R, Zanetti A, Brumm R, Foley SF, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE. Contrib Mineral Petrol 137:36–45

    Google Scholar 

  • Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+ /Fetotal of mariana Arc basalts and mantle wedge fO2. J Petrol 55(12):2513–2536

    Google Scholar 

  • Browne BL, Eichelberger JC, Patino LC, Vogel TA, Dehn J, Uto K, Hoshizumi H (2006) Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan. J Petrol 47(2):301–328

    Google Scholar 

  • Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano: G3. Geochem Geophys Geosyst 8(4):1–24

    Google Scholar 

  • Churikova, T.G., Gordeychik, B.N., Ivanov, B.V., and Worner, G., 2013, Relationship between Kamen Volcano and the Klyuchevskaya group of volcanoes (Kamchatka): Journal of Volcanology and Geothermal Research, v. 263, p. 3–21.

  • Coogan LA, Saunders AD, Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem Geol 368:1–10

    Google Scholar 

  • Dalpé C, Baker DR (2000) Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Mineral Petrol 140(2):233–250

    Google Scholar 

  • Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110:265–280

    Google Scholar 

  • Davidson JP, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    Google Scholar 

  • Davydova VO, Shcherbakov VD, Plechov PY, Perepelov AB (2017) Petrology of Mafic enclaves in the 2006–2012 eruptive products of Bezymianny volcano, Kamchatka. Petrology 25(6):592–614

    Google Scholar 

  • Delaney JS, Dyar MD, Sutton SR, Bajit S (1998) Redox ratios with relevant resolution: Solving an old problem by using the synchrotron microXANES probe. Geology 26(2):139–142

    Google Scholar 

  • Dirksen O, Humphreys MCS, Pletchov P, Melnik O, Demyanchuk Y, Sparks RSJ, Mahony S (2006) The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: observation, petrological investigation and numerical modelling. J Volcanol Geotherm Res 155:201–226

    Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids Part I: calibration solubility models. J Petrol 36(6):1607–1631

    Google Scholar 

  • Donovan JJ, Tingle TN (1996) An improved mean atomic number background correction for quantitative microanalysis. J Microsc Soc Am 2(1):1–7

    Google Scholar 

  • Donovan J, Kremser D, Fournelle J (2012) Probe for EPMA: acquisition, automation and analysis. Probe Software Inc., Oregon

    Google Scholar 

  • Dyar MD, McGuire AV, Mackwell SJ (1992) Fe3+/H+ and D/H in kaersutites—misleading indicators of mantle source fugacities. Geology 20:565–568

    Google Scholar 

  • Dyar MD, Mackwell SJ, McGuire AV, Cross LR, Robertson JD (1993) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: implications for mantle metasomatism. Am Mineral 78:968–979

    Google Scholar 

  • Dyar MD, Breves EA, Gunter ME et al (2016) Use of multivariate analysis for synchrotron micro-XANES analysis of iron valence state in amphiboles. Am Mineral 101:1171–1189

    Google Scholar 

  • Eggler DH (1976) Does CO2 cause partial melting in the low-velocity layer of the mantle? Geology 4(2):69–72

    Google Scholar 

  • Eggler DH (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. Am J Sci 278:305–343

    Google Scholar 

  • Eichelberger JC (1975) Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes. Geolog Soc Am Bull 86:1381–1391

    Google Scholar 

  • Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28(7):603–606

    Google Scholar 

  • Eichelberger JC, Izbekov PE, Brown BL (2006) Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos 87:135–154

    Google Scholar 

  • Fedotov SA (1991) Active volcanoes of Kamchatka. Moscow Nauka Publishers, Moscow, vol. 1–2. pp. 415

  • Ferlito C (2011) Bimodal geochemical evolution at Sheveluch stratovolcano, Kamchatka, Russia: consequence of a complex subduction at the junction of the Kuril Kamchatka and Aleutian island arcs. Earth Sci Rev 105:49–69

    Google Scholar 

  • Ferlito C, Lanzafame G (2010) The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119(3–4):642–650

    Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res Solid Earth 89:B662–B672

    Google Scholar 

  • Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner T, Ozerov A (2016) A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism. J Petrol 57(9):1811–1832

    Google Scholar 

  • Gavrilenko M, Ozerov A, Kyle PR, Carr MJ, Nikulin A, Vidito C, Danyushevsky LV (2016) Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bull Volcanol 78(47):1–28

    Google Scholar 

  • Gavrilenko M, Krawczynski MJ, Ruprecht P, Li W, Catalano JG (2019) The quench control of water estimates in convergent margin magmas. Am Mineral 104(7):936–948

    Google Scholar 

  • Ghiorso MS, Gualda GA (2015) An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol 169(6):1–30

    Google Scholar 

  • Golowin R, Portnyagin M, Hoernle K, Sobolev A, Kuzmin D, Werner R (2017) The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: the case of Manihiki Plateau and the Troodos ophiolite. Contrib Mineral Petrol 172(11–12):104

    Google Scholar 

  • Gorbach NV, Portnyagin M (2011) Geology and petrology of the lava complex of young Shiveluch Volcano, Kamchatka. Petrology 19(2):134–166

    Google Scholar 

  • Gorbach NV, Portnyagin M, Tembrel I (2013) Volcanic structure and composition of Old Shiveluch volcano, Kamchatka. J Volcanol Geotherm Res 263:193–208

    Google Scholar 

  • Gorbach N, Portnyagin MV, Philosofova T (2016) Dynamics of extrusive dome growth and variations in chemical and mineralogical composition of Young Shiveluch andesites in 2001–2013. J Volcanol Seismol 10(6):360–381

    Google Scholar 

  • Gordeychik BN, Churikova TG, Kronz A, Sundermeyer C, Simakin A, Wörner G (2018) Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano. Sci Rep 8(1):1–15

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Google Scholar 

  • Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Muntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565

    Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Ann Rev Earth Planet Sci 40:413–439

    Google Scholar 

  • Halama R, Boudon G, Villemant B, Joron J, LeFriant A, Komorowksi J (2006) Pre-eruptive crystallization conditions of mafic and silicic magmas at the plat pays volcanic complex, Dominica (Lesser Antilles). J Volcanol Geotherm Res 153:200–220

    Google Scholar 

  • Helz RT (1973) Phase relations of basalts in their melting range at PH2O = 5 kb as a function of oxygen fugacity, Part I. Mafic phases. J Petrol 14(2):249–302

    Google Scholar 

  • Hochstaedter AG, Kepezhinskas P, Defant M, Drummond M, Koloskov A (1996) Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J Geophys Res 101(B1):697–712

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Google Scholar 

  • Holloway JR (2004) Redox reactions in seafloor basalts: possible insights into silicic hydrothermal systems. Chem Geol 210(1–4):225–230

    Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch Volcano: insights from phenocryst zoning. J Petrol 47(12):2303–2334

    Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2008) Shallow-level decompression crystallisation and deep magma supply at Shiveluch Volcano. Contrib Mineral Petrol 155:45–61

    Google Scholar 

  • Humphreys MCS, Brooker RA, Fraser DG, Burgisser A, Mangan MT, McCammon C (2015) Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes. J Petrol 56(4):795–814

    Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65(24):4523–4537

    Google Scholar 

  • Iwasaki T, Levin V, Nikulin A, Iidaka T (2013) Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609:184–201

    Google Scholar 

  • Izbekov PE, Eichelberger JC, Ivanov BV (2004) The 1996 Eruption of Karymsky Volcano, Kamchatka: historical record of basaltic replenishment of an Andesite Reservoir. J Petrol 45(11):2325–2345

    Google Scholar 

  • Jagoutz O, Muntener O, Schmidt MW, Burg J (2011) The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth Planet Sci Lett 303(1–2):25–36

    Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47

    Google Scholar 

  • Johnson KTM (1994) Experimental cpx and garnet melt partitioning of REE and other trace elements at high pressures; petrogenetic implications. Mineralog Mag 58:454–455

    Google Scholar 

  • Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-ray Anal 41:843–867

    Google Scholar 

  • Kamenetsky VS, Pompilio M, Métrich N, Sobolev AV, Kuzmin DV, Thomas R (2007) Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology 35(5):255–258

    Google Scholar 

  • Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Let 329–330:109–121

    Google Scholar 

  • King PL, Hervig RL, Holloway JR, Vennemann TW, Righter K (1999) Oxy-substitution and dehydrogenation in mantle-derived amphibole megacrysts. Geochim Cosmochim Acta 63(21):3635–3651

    Google Scholar 

  • King PL, Hervig RL, Holloway JR, Delaney JS, Dyar MD (2000) Partitioning of Fe3+/Fetotal between amphibole and basanitic melt as a function of oxygen fugacity. Earth Planet Sci Let 178:97–112

    Google Scholar 

  • Knaack C, Cornelius S, Hooper P (1994) Trace element analyses of rocks and minerals by ICP-MS: open file report. Department of Geology, Washington State University

  • Kocak K, Isik F, Arslan M, Zedef V (2005) Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, central Anatolian crystalline complex, Turkey. J Asian Earth Sci 25:883–891

    Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164:317–339

    Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity, and pressure on their redox states. Contrib Mineral Petrol 108(1–2):82–92

    Google Scholar 

  • Kushiro I, Mysen BO (2002) A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt. Geochim Cosmochim Acta 66(12):2267–2272

    Google Scholar 

  • Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Miner Petrol 159:475–492

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES et al (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission of New Minerals and Mineral Names. Am Mineral 82:1019–1037

    Google Scholar 

  • Lee CA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279(1–2):20–33

    Google Scholar 

  • Martin VM, Holness MB, Pyle DM (2006) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geoth Res 154:89–102

    Google Scholar 

  • Martin VM, Morgan DJ, Jerram DA, Caddick MJ, Prior DJ, Davidson JP (2008) Bang! month-scale eruption triggering at Santorini Volcano. Science 321(5893):1178

    Google Scholar 

  • Mathez EA (1984) Influence of degassing on oxidation states of basaltic magmas. Nature 310:371–375

    Google Scholar 

  • Mironov N, Portnyagin MV, Botcharnikov RE, Gurenko A, Hoernle K, Holtz F (2015) Quantification of the CO2 budget and H2O-CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet Sci Lett 425:1–11

    Google Scholar 

  • Mitchell AL, Gaetani GA, O’Leary JA, Hauri EH (2017) H2O solubility in basalt at upper mantle conditions. Contrib Mineral Petrol 172(85):1–16

    Google Scholar 

  • Moore G, Vennemann TW, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kbar. Am Mineral 83(1):36–42

    Google Scholar 

  • Moore LR, Gazel W, Tuohy R et al (2015) Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am Miner 199(4):806–823

    Google Scholar 

  • Moussallam Y, Edmonds M, Scaillet B, Peters N, Gennaro E, Sides I, Oppenheimer C (2016) The impact of degassing on the oxidation state of basaltic magmas: a case study of Kilauea volcano. Earth Planet Sci Lett 450:317–325

    Google Scholar 

  • Nikulin A, Levin V, Shuler A, West M (2010) Anomaloug seismic structure beneath the Klyuchevskoy Group, Kamchatka. Geophys Res Lett 37(14)

  • Nikulin A, Levin V, Carr M, Herzberg C, West M (2012) Evidence for two upper mantle sources driving volcanism in Central Kamchatka. Earth Planet Sci Lett 321:14–19

    Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95

    Google Scholar 

  • Parlak O, Hock V, Delaloye M (2000) Suprasubduction zone origin of the Pozanti-Karsanti Ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 137. Geological Society of London, London, pp 219–234

    Google Scholar 

  • Parman SW, Grove TL, Kelley KA, Plank T (2011) Along-arc variations in the pre-eruptive H2O contents of mariana arc magmas inferred from fractionation paths. J Petrol 52(2):257–278

    Google Scholar 

  • Paster TP, Schauwecker DS, Haskin LA (1974) The behavior of some trace elements during solidification of the Skaergaard layered series. Geochim Cosmochim Acta 38(10):1549–1577

    Google Scholar 

  • Plail M, Barclay J, Humphreys MCS, Edmonds M, Herd RA, Christopher TE (2014) Characterization of mafic enclaves in the erupted products of Soufrière Hills Volcano, Montserrat, 2009 to 2010. In: Wadge G, Robertson REA, Voight B (eds) The eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010. Geological Society of London, London, Memoirs. vol. 39, pp. 343–360

  • Plail M, Edmonds M, Woods AW, Barclay J, Humphreys MCS, Herd RA, Christopher T (2018) Mafic enclaves record syn-eruptive basalt intrusion and mixing. Earth Planet Sci Lett 484:30–40

    Google Scholar 

  • Plank T, Manning CE (2019) Subducting carbon. Nature 574(7778):343–352

    Google Scholar 

  • Ponomareva VV, Melekescev IV, Braitsva O, Churikova TG, Pevzner M, Sulerzhitsky L (2007a) Late pleistocene-holocene volcanism on the Kamchatka Peninsula, Northwest Pacific Region. In: Eichelberger JC, Gordeev E, Izbekov PE, Kasahara M, Lees J (eds) Volcanism and subduction: the Kamchatka Region. American Geophysical Union. vol. 172, pp. 165–198

  • Ponomareva V, Kyle P, Pevzner M, Sulerzhitsky L, Hartman M (2007b) Holocene eruptive history of Shiveluch Volcano, Kamchatka Peninsula, Russia. In: Eichelberger JC, Gordeev E, Izbekov PE, Kasahara M, Lees J (eds) Volcanism and subduction: the Kamchatka Region. American Geophysical Union. vol. 172, pp. 263–282

  • Ponomareva V, Portnyagin MV, Pevzner M, Blaauw M, Kyle P, Derkachev A (2015) Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass. Int J Earth Sci 104:1459–1482

    Google Scholar 

  • Portnyagin M, Bindeman I, Hoernle K, Hauff F (2007) Geochemistry of primitive lavas of the Central Kamchatka depression: magma generation at the edge of the pacific plate. In: Eichelberger JC, Gordeev E, Izbekov PE, Kasahara M, Lees J (eds) Volcanism and subduction: the Kamchatka Region, American Geophysical Union. vol. 172, pp. 199–239

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 150:45–66

    Google Scholar 

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38(10):919–922

    Google Scholar 

  • Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840

    Google Scholar 

  • Shinohara H (2013) Volatile flux from subduction zone volcanoes: insights from a detailed evaluation of the fluxes from volcanoes in Japan. J Volcanol Geotherm Res 268:46–63

    Google Scholar 

  • Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277:115–125

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geolog Soc Lond Spl Publ 42:313–345

    Google Scholar 

  • Tolstykh ML, Pevzner M, Naumov VB, Babanskii AD, Kononkova NN (2015) Types of parental melts of pyroclastic rocks of various structural–age complexes of the Shiveluch Volcanic Massif, Kamchatka: evidence from inclusions in minerals. Petrology 23(5):480–517

    Google Scholar 

  • Vigouroux N, Wallace PJ, Kent AJR (2008) Volatiles in high-K magmas from the western Trans-Mexican volcanic belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49(9):1589–1618

    Google Scholar 

  • Volynets ON (1991) Geochemical types, petrology, and genesis of late cenozoic volcanic rocks from the Kurile-Kamchatka Island-Arc system. Intern Geol Rev 36:373–405

    Google Scholar 

  • Volynets ON, Ponomareva V, Babansky AD (1997) Magnesian basalts of Shiveluch Andesite Volcano, Kamchatka. Petrology 5(2):206–221

    Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140(1–3):217–240

    Google Scholar 

  • Wallace PJ, Kamenetsky VS, Cervantes P (2015) Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am Mineral 100(4):787–794

    Google Scholar 

  • Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93(7):1142–1147

    Google Scholar 

  • Waters LE, Lange RA (2016) No effect of H2O degassing on the oxidation state of magmatic liquids. Earth Planet Sci Lett 447:48–59

    Google Scholar 

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Google Scholar 

  • Wyllie PJ, Huang W (1976a) High CO2 solubilities in mantle magmas. Geology 4(1):21–24

    Google Scholar 

  • Wyllie PJ, Huang W (1976b) Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol 54:79–107

    Google Scholar 

  • Yoder HSJ, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3(3):342–532

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Washington University in Saint Louis for funding field and lab work associated with this project. AEG and MG acknowledge the McDonnell Center for the Space Sciences for funding. PR acknowledges support from National Science Foundation EAR Grants #1426820 and #1719687. Fieldwork for NVG was supported by Grant #15-05-06440 from the Russian Foundation for Basic Research. MJK acknowledges support from National Science Foundation EAR Grant #1654683. We thank Paul Carpenter for help with electron probe microanalysis. This manuscript benefitted from helpful conversations with Rita Parai, Doug Wiens, David Fike, and Kelsey Prissel. M. Portnyagin and P. Ulmer are thanked for their helpful reviews of this manuscript, and O. Müntener is thanked for editorial handling and review.

Funding

Funding from Washington University in Saint Louis is acknowledged for completion of this project. AEG and MG also acknowledge the McDonnell Center for Space Sciences for funding. MJK acknowledges support from NSF EAR Grant #1654683. Fieldwork for NVG was supported by Grant #15-05-06440 from the Russian Foundation for Basic Research. PR acknowledges support from NSF EAR Grants #1426820 and #1719687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea E. Goltz.

Ethics declarations

Conflict of interest

We do not have any conflict of interest to declare.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goltz, A.E., Krawczynski, M.J., Gavrilenko, M. et al. Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano, Kamchatka. Contrib Mineral Petrol 175, 115 (2020). https://doi.org/10.1007/s00410-020-01746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01746-5

Keywords

Navigation