Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T08:01:35.207Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Montmorillonite-Supported Tio2 Composites for Enhanced UV Absorption

Published online by Cambridge University Press:  01 January 2024

Daeyoung Kim
Affiliation:
Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Korea Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
Daniel Kim
Affiliation:
Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
Jaehwan Kim
Affiliation:
Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
Changyun Park
Affiliation:
Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
Ki-Min Roh
Affiliation:
Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Korea Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
Il-Mo Kang
Affiliation:
Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
Sung Man Seo*
Affiliation:
Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea
*
*E-mail address of corresponding author: smseo@kigam.re.kr

Abstract

Titanium dioxide (TiO2, rutile) nanoparticles, inorganic ultraviolet absorbers, are used extensively in sunscreen cosmetics as an inorganic ultraviolet (UV) absorber to prevent skin damage; because of their nanotoxicity, use in combination with a support, such as montmorillonite (Mnt), rather than alone, is suggested. Mnt-supported TiO2 composites (Mnt-TiO2) for sunscreens are most suitable when the particles are spherical and of relatively uniform size, which are normally accomplished by spray drying, but this is difficult to achieve because of the naturally layered structure of Mnt. The objective of the present study was, therefore, to find the ideal characteristics of spray-drying nozzles to produce the desired spherical shape and size distribution of the Mnt-TiO2 composite particles. The starting Mnt was extracted from natural bentonite by particle-size separation. An ultrasonic nozzle in the spray dryer was selected for use in the synthesis of Mnt-TiO2 composites based on the particle-size distribution (PSD) of Mnt prepared using a two-fluid nozzle and an ultrasonic nozzle at 453 K. The incorporation of TiO2 in the final Mnt-TiO2 composites was examined by X-ray powder diffraction (XRD) and elemental analysis. With increasing TiO2 concentration, the TiO2 content and average particle size of the Mnt-TiO2 composites increased. Scanning electron microscopy (SEM) images showed that all samples prepared had uniform and nearly spherical shapes. Absorbance of UV by Mnt-TiO2 (5:1) composites was greater than that by either purified Mnts or pure TiO2. The present study demonstrated a simple method, using a spray dryer with an ultrasonic nozzle, to synthesize Mnt-TiO2 composites of uniform size and shape suitable for cosmetic application.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Daeyoung Kim and Daniel Kim have contributed equally to this work.

References

Adamis, Z., Fodor, J., & Williams, R. B. (2005). Bentonite, kaolin and selected clay minerals. in: Environmental Health Criteria 231. Geneva: World Health Organization http://www.who.int/iris/handle/10665/43102 (accessed February 2020).Google Scholar
Adler, B. L., & DeLeo, V. A. (2020). Sunscreen safety: a review of recent studies on humans and the environment. Current Dermatology Reports, 19.CrossRefGoogle Scholar
Armstrong, B., Brenner, D. J., Baverstock, K., & Cardis, E. (2012). International Agency for Research on Cancer (2012) Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 100D: Solar and Ultraviolet Radiation.Google Scholar
Bahadur, J., Sen, D., Mazumder, S., Paul, B., Bhatt, H., & Singh, S. G. (2012). Control of buckling incolloidal droplets during evaporationinduced assembly of nanoparticles. Langmuir, 28, 19141923.CrossRefGoogle Scholar
Bahranowski, K., Gaweł, A., Klimek, A., Michalik-Zym, A., Napruszewska, B. D., Nattich-Rak, M., Rogowska, M., & Serwicka, E. M. (2017). Influence of purification method of Namontmorillonite on textural properties of clay mineral composites with TiO2 nanoparticles. Applied Clay Science, 140, 7580.CrossRefGoogle Scholar
Bari, R., Parviz, D., Khabaz, F., Klaassen, C. D., Metzler, S. D., Hansen, M. J., Khare, R., & Green, M. J. (2015). Liquid phase exfoliation and crumpling of inorganic nanosheets. Physical Chemistry Chemical Physics, 17, 93839393.CrossRefGoogle ScholarPubMed
Bastan, F. E., Erdogan, G., Moskalewicz, T., & Ustel, F. (2017). Spray drying of hydroxyapatite powders: The effect of spray drying parameters and heat treatment on the particle size and morphology. Journal of Alloys and Compounds, 724, 586596.CrossRefGoogle Scholar
Bernauer, U., Bodin, L., Celleno, L., Chaudhry, Q. M., Coenraads, P. J., Dusinska, M., Duus-Johansen, J., Ezendam, J., Gaffet, E., Galli, L. C., Granum, B. B., Panteri, E., Rogiers, V., Rousselle, C., Stepnik, M., Vanhaecke, T., & Wijnhoven, S. (2016). OPINION ON titanium dioxide (nano form) coated with cetyl phosphate, manganese dioxide or triethoxycaprylylsilane as UV-filter in dermally applied cosmetic. Luxembourg: Health and Food Safety, European Commission https://hal.archives-ouvertes.fr/hal-01493488 (accessed February 2020).Google Scholar
Boylu, F., Çinku, K., Esenli, F., & Çelik, M. S. (2010). The separation efficiency of Na-bentonite by hydrocyclone and characterization of hydrocyclone products. International Journal of Mineral Processing, 94, 196202.CrossRefGoogle Scholar
Burnett, M. E., & Wang, S. Q. (2011). Current sunscreen controversies: a critical review. Photodermatology, Photoimmunology & Photomedicine, 27, 5867.CrossRefGoogle ScholarPubMed
Caglar, B., Afsin, B., Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149, 242248.CrossRefGoogle Scholar
Carretero, M. I., & Pozo, M. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, 47, 171181.CrossRefGoogle Scholar
Chen, Y., Shaked, D., & Banin, A. (1979). The role of structural iron (III) in the UV absorption by smectites. Clay Minerals, 14, 93102.CrossRefGoogle Scholar
Collaris, E. J., & Frank, J. (2008). Photoallergic contact dermatitis caused by ultraviolet filters in different sunscreens. International Journal of Dermatology, 47, 3537.CrossRefGoogle ScholarPubMed
da Silva Favero, J., dos Santos, V., Weiss-Angeli, V., Gomes, L. B., Veras, D. G., Dani, N., Mexias, A. S., & Bergmann, C. P. (2019). Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Applied Clay Science, 175, 4046.CrossRefGoogle Scholar
Del Hoyo, C., Vicente, M. A., & Rives, V. (2001). Preparation of drugmontmorillonite UV-radiation protection compounds by gas-solid adsorption. Clay Minerals, 33, 541546.CrossRefGoogle Scholar
Dening, T. J., Joyce, P., Rao, S., Thomas, N., & Prestidge, C. A. (2016). Nanostructured montmorillonite clay for controlling the lipase-mediated digestion of medium chain triglycerides. ACS Applied Materials & Interfaces, 8, 3273232742.CrossRefGoogle ScholarPubMed
Dening, T. J., Joyce, P., Kovalainen, M., Gustafsson, H., & Prestidge, C.A. (2019). Spray dried smectite clay particles as a novel treatment against obesity. Pharmaceutical Research, 36, 21.CrossRefGoogle Scholar
Dong, Y., Ng, W. K., Hu, J., Shen, S., & Tan, R. B. (2014). Clay as a matrix former for spray drying of drug nanosuspensions. International Journal of Pharmaceutics, 465(1–2), 8389.CrossRefGoogle Scholar
Fisichella, M., Berenguer, F., Steinmetz, G., Auffan, M., Rose, J., & Prat, O. (2012). Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. Particle and Fibre Toxicology, 9, 18.CrossRefGoogle ScholarPubMed
Fujiwara, K., Suematsu, H., Kiyomiya, E., Aoki, M., Sato, M., & Moritoki, N. (2008). Size-dependent toxicity of silica nanoparticles to Chlorella kessleri. Journal of Environmental Science and Health, Part A, 43, 11671173.CrossRefGoogle Scholar
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40, 11071121.CrossRefGoogle Scholar
Gilbert, E., Pirot, F., Bertholle, V., Roussel, L., Falson, F., & Padois, K. (2013). Commonly used UV filter toxicity on biological functions: review of last decade studies. International Journal of Cosmetic Science, 35, 208219.CrossRefGoogle ScholarPubMed
Hassani, A., Khataee, A., & Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling. Journal of Molecular Catalysis A: Chemical, 409, 149161.CrossRefGoogle Scholar
Hellrup, J., Nordström, J., & Mahlin, D. (2017). Powder compression mechanics of spray-dried lactose nanocomposites. International Journal of Pharmaceutics, 518, 110.CrossRefGoogle ScholarPubMed
Hoang-Minh, T., Le, T. L., Kasbohm, J., & Gieré, R. (2010). UVprotection characteristics of some clays. Applied Clay Science, 48, 349357.CrossRefGoogle Scholar
Janjua, N. R., Kongshoj, B., Andersson, A. M., & Wulf, H. C. (2008). Sunscreens in human plasma and urine after repeated whole-body topical application. Journal of the European Academy of Dermatology and Venereology, 22, 456461.CrossRefGoogle ScholarPubMed
Jeong, C. B., Won, E. J., Kang, H. M., Lee, M. C., Hwang, D. S., Hwang, U. K., Zhou, B., Souissi, S., Lee, S.-J., & Lee, J. S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental Science & Technology, 50, 88498857.CrossRefGoogle ScholarPubMed
Kemp, I. C., Wadley, R., Hartwig, T., Cocchini, U., See-Toh, Y., Gorringe, L., Fordham, K., & Ricard, F. (2013). Experimental study of spray drying and atomization with a two-fluid nozzle to produce inhalable particles. Drying Technology, 31, 930941.CrossRefGoogle Scholar
Kemp, I. C., Hartwig, T., Herdman, R., Hamilton, P., Bisten, A., & Bermingham, S. (2016). Spray drying with a two-fluid nozzle to produce fine particles: atomization, scale-up, and modeling. Drying Technology, 34, 12431252.CrossRefGoogle Scholar
Kim, S., & Choi, K. (2014). Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. Environment International, 70, 143157.CrossRefGoogle ScholarPubMed
Kim, S. C., Chen, D. R., Qi, C., Gelein, R. M., Finkelstein, J. N., Elder, A., Bentley, K., Oberdörster, G., & Pui, D. Y. H. (2010). A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study. Nanotoxicology, 4, 4251.CrossRefGoogle ScholarPubMed
Kun, R., Mogyorósi, K., & Dékány, I. (2006). Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Applied Clay Science, 32, 99110.CrossRefGoogle Scholar
Legako, J., & Dunford, N. T. (2010). Effect of spray nozzle design on fish oil–whey protein microcapsule properties. Journal of Food Science, 75, E394–E400.CrossRefGoogle ScholarPubMed
Li, S. Q., Zhu, R. R., Zhu, H., Xue, M., Sun, X. Y., Yao, S. D., & Wang, S. L. (2008). Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food and Chemical Toxicology, 46, 36263631.CrossRefGoogle ScholarPubMed
Liang, H., Wang, Z., Liao, L., Chen, L., Li, Z., & Feng, J. (2017). High performance photocatalysts: Montmorillonite supported-nano TiO2 composites. Optik, 136, 4451.CrossRefGoogle Scholar
Limbach, L. K., Li, Y., Grass, R. N., Brunner, T. J., Hintermann, M. A., Muller, M., Gunther, D., & Stark, W. J. (2005). Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 39, 93709376.CrossRefGoogle ScholarPubMed
Liu, R., Zhang, X., Pu, Y., Yin, L., Li, Y., Zhang, X., Liang, G., Li, X., & Zhang, J. (2010). Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. Journal of Nanoscience and Nanotechnology, 10, 51615169.CrossRefGoogle ScholarPubMed
MacEwan, D. M. (1944). Identification of the montmorillonite group of minerals by X-rays. Nature, 154, 577578.CrossRefGoogle Scholar
Matta, M. K., Zusterzeel, R., Pilli, N. R., Patel, V., Volpe, D. A., Florian, J., Oh, L., Bashaw, E., Zineh, I., Sanabria, C., Kemp, S., Godfrey, A., Adah, S., Coelho, S., Wang, J., Furlong, L. A., Ganley, C., Michele, T., & Strauss, D. G. (2019). Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. Journal of the American Medical Association, 321, 20822091.CrossRefGoogle ScholarPubMed
Maxim, L. D., Niebo, R., & McConnell, E. E. (2016). Bentonite toxicology and epidemiology–a review. Inhalation Toxicology, 28, 591617.CrossRefGoogle ScholarPubMed
Mishra, A., Mehta, A., Sharma, M., & Basu, S. (2017). Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/Clay nanocomposites: a comparison study of different type of clays. Journal of Alloys and Compounds, 694, 574580.CrossRefGoogle Scholar
Mukherjee, S. (2013). Chapter 9. Clays for medicines and fillers. In Mukherjee, S. (Ed.), The science of clays: Applications in industry, engineering and environment (pp. 151158). Dordrecht: Springer.CrossRefGoogle Scholar
Nones, J., Riella, H. G., Trentin, A. G., & Nones, J. (2015). Effects of bentonite on different cell types: a brief review. Applied Clay Science, 105, 225230.CrossRefGoogle Scholar
O'Sullivan, J. J., Norwood, E. A., O'Mahony, J. A., & Kelly, A. L. (2019). Atomisation technologies used in spray drying in the dairy industry: a review. Journal of Food Engineering, 243, 5769.CrossRefGoogle Scholar
Park, J. H., Shin, H. J., Kim, M. H., Kim, J. S., Kang, N., Lee, J. Y., Kim, K. T., Lee, J. I., & Kim, D. D. (2016). Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Journal of Pharmaceutical Investigation, 46, 363375.CrossRefGoogle ScholarPubMed
PDXL2, Advanced integrated X-ray powder diffraction suite, version 2.4.2.0, Rigaku Corporation.Google Scholar
Plantz, P. E. (2009). Pigment particle size using Microtrac Laser Technology. SL-AN-30 Revision A. http://www.Microtrac.com (accessed February 2020).Google Scholar
Rothen-Rutishauser, B. M., Schürch, S., Haenni, B., Kapp, N., & Gehr, P. (2006). Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environmental Science & Technology, 40, 43534359.CrossRefGoogle Scholar
Schaefer, J., & Lee, G. (2015). Arrhenius activation energy of damage to catalase during spray-drying. International Journal of Pharmaceutics, 489, 124130.CrossRefGoogle ScholarPubMed
Schlumpf, M., Cotton, B., Conscience, M., Haller, V., Steinmann, B., & Lichtensteiger, W. (2001). In vitro and in vivo estrogenicity of UV screens. Environmental Health Perspectives, 109, 239244.CrossRefGoogle ScholarPubMed
Schneider, S. L., & Lim, H. W. (2019). A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatology, Photoimmunology & Photomedicine, 35, 442446.CrossRefGoogle ScholarPubMed
Stadler, M., & Schindler, P. W. (1993). Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite. Clays and Clay Minerals, 41, 288296.CrossRefGoogle Scholar
Stunda-Zujeva, A., Stepanova, V., & Bērzi$nLa-Cimdi$nLa, L. (2015). Effect of spray dryer settings on the morphology of illite clay granules. Proceedings of the 10th International Scientific and Practical Conference, 216, 222.Google Scholar
Sun, H., Peng, T., Liu, B., & Xian, H. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Applied Clay Science, 114, 440446.CrossRefGoogle Scholar
Synder, H. E., & Lechuga-Ballesteros, D. (2008). Spray drying: Theory and pharmaceutical applications. In Augsburger, L. L. & Hoag, S. W. (Eds.), Pharmaceutical dosage forms - Tablets (3rd ed., pp. 243276). Boca Raton: CRC Press.Google Scholar
Tahir, M., & Amin, N. S. (2013). Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor. Chemical Engineering Journal, 230, 314327.CrossRefGoogle Scholar
Teixeira, P.C., Castro, M. H., & Kirby, R. M. (1995). Death kinetics of Lactobacillus bulgaricus in a spray drying process. Journal of Food Protection, 58, 934936.Google ScholarPubMed
Therapeutic Goods Administration. (2016). Literature review on the safety of titanium dioxide and zinc oxide nanoparticles in sunscreens. Canberra: Department of Health, Australian Government https://www.tga.gov.au/literature-review-safety-titanium-dioxide-and-zinc-oxide-nanoparticles-sunscreens (accessed February 2020).Google Scholar
Tsapis, N., Dufresne, E. R., Sinha, S. S., Riera, C. S., Hutchinson, J. W., Mahadevan, L., & Weitz, D. A. (2005). Onset of buckling in drying droplets of colloidal suspensions. Physical Review Letters, 94, 018302.CrossRefGoogle ScholarPubMed
Vicente, M. A., Sánchez-Camazano, M., Sánchez-Martín, M. J., Del Arco, M., Martín, C., Rives, V., & Vicente-Hernández, J. (1989). Adsorption and desorption of N-methyl 8-hydroxy quinoline methyl sulfate on smectite and the potential use of the clay-organic product as an ultraviolet radiation collector. Clays and Clay Minerals, 37, 157163.CrossRefGoogle Scholar
Vicente, J., Pinto, J., Menezes, J., & Gaspar, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology, 247, 17.CrossRefGoogle Scholar
Walzel, P. (2011). Influence of the spray method on product quality and morphology in spray drying. Chemical Engineering & Technology, 34, 10391048.CrossRefGoogle Scholar
Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, Y., Jiao, F., Zhao, Y., & Chai, Z. (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 168, 176185.CrossRefGoogle ScholarPubMed
Wang, W. N., Purwanto, A., Lenggoro, I. W., Okuyama, K., Chang, H., & Jang, H. D. (2008). Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Industrial & Engineering Chemistry Research, 47, 16501659.CrossRefGoogle Scholar
Watanabe, M. (2015). Sample preparation for X-ray fluorescence analysis IV. Fusion bead method – part 1 basic principles. Rigaku Journal, 31, 1217.Google Scholar
Wu, J., Liu, W., Xue, C., Zhou, S., Lan, F., Bi, L., Xu, H., Yang, X., & Zeng, F. D. (2009). Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicology Letters, 191, 18.CrossRefGoogle ScholarPubMed
Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 14441452.CrossRefGoogle ScholarPubMed
Yalçin, H., & Gumşer, G. (2000). Mineralogical and geochemical characteristics of late Cretaceous bentonite deposits of the Kelkit Valley Region, northern Turkey. Clay Minerals, 35, 807825.CrossRefGoogle Scholar
Young, A. R., Harrison, G. I., Chadwick, C. A., Nikaido, O., Ramsden, J., & Potten, C. S. (1998). The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. Journal of Investigative Dermatology, 111, 982988.CrossRefGoogle ScholarPubMed