Skip to main content

Advertisement

Log in

Cardio-protective effects of a dioxidovanadium(V) complex in male sprague–dawley rats with streptozotocin-induced diabetes

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cardiovascular complications are among the leading causes of morbidity and mortality in diabetes mellitus (DM). Despite the anti-hyperglycemic effects of various anti-diabetic therapeutic agents like insulin, some of these drugs are implicated in precipitating cardiovascular dysfunction. There is therefore an imperative need to seek alternative drugs that may ameliorate these complications. Accordingly, the aim of the study was to investigate the effects of a dioxidovanadium (V) complex, cis-[VO2(obz)py]) on selected cardiovascular function markers in STZ-induced diabetic rats. The vanadium complex (40 mg kg) was administered orally twice every 3rd day 5 weeks, non-diabetic and diabetic control groups received distilled water whereas the insulin group received subcutaneous insulin injections twice daily for 5 weeks. Blood glucose concentrations, mean arterial pressure (MAP), heart rate, triglycerides (TG) and total cholesterol concentrations were monitored weekly for 5 weeks. Rats were then euthanised and blood and hearts were collected for biochemical analysis. There was a significant decrease in blood glucose, triglycerides, cholesterol concentrations as well as blood pressure of vanadium treated rats compared to the untreated diabetic animals. Vanadium treatment also attenuated cardiac oxidative stress and decreased the expression of transforming growth factor β1 (TGFβ1) and Smad7. Lastly, the administration of the vanadium complex significantly decreased C reactive protein (CRP) and cardiotropin 1(CT-1) concentrations in the plasma and heart tissues. The administration of the dioxidovanadium(V) complex to diabetic rats culminated into cardio-protective effects. Taken together, these observations suggest that this metal complex exhibit a significant potential as an alternative therapeutic drug for DM management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Additional/raw data can be made available upon request.

References

  • Alique M, Luna C, Carracedo J, Ramı´Rez R (2015) LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr Res 59:29240

    Article  PubMed  CAS  Google Scholar 

  • Aragno M, Mastrocola R, Alloatti G, Vercellinatto I, Bardini P, Geuna S, Catalano MG, Danni O, Boccuzzi G (2008) Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 149:380–388

    Article  CAS  PubMed  Google Scholar 

  • Arayne S, Sultana N, Haroon U, Mesaik MA (2009) Synthesis, characterization, antibacterial and anti-inflammatory activities of enoxacin metal complexes. Bioinorg Chem Appl. https://doi.org/10.1155/2009/914105

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashik U, Ara R, Mahroof-Tahir M, Maqsood ZT, Khan KM, Khan SN, Siddiqui H, Choudhary MI (2008) Synthesis, spectroscopy, and biological properties of vanadium(IV)—hydrazide complexes. Chem Biodivers 5:82–92

    Article  Google Scholar 

  • Bhanot S, Michoulas A, Mcneill JH (1995) Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive rats. Mol Cell Biochem 153:205–209

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan S, Fukunaga K (2009) Cardioprotection by vanadium compounds targeting Akt-mediated signalling. J Pharmacol Sci 110:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bon H, Hales P, Lumb S, Holdsworth G, Johnson T, Qureshi O, Twomey BM (2019) Spontaneous extracellular matrix accumulation in a human in vitro model of renal fibrosis is mediated by αV integrins. Nephron 142:328–350

    Article  CAS  PubMed  Google Scholar 

  • Booysen IN, Hlela T, Ackerman MP, Xulu B (2015) Mono- and polynuclear vanadium(IV) and -(V) compounds with 2-substituted phenyl/pyridyl heterocyclic chelates. Polyhedron 85:144–150

    Article  CAS  Google Scholar 

  • Ceretta LB, Reus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, Steckert AV, Dal-Pizzol F, Quevedo J (2011) Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. https://doi.org/10.1155/2012/302682

    Article  Google Scholar 

  • Chait A, Eckel RH (2016) Lipids, lipoproteins, and cardiovascular disease: clinical pharmacology now and in the future. J Clin Endocrinol Metab 101:804–814

    Article  CAS  PubMed  Google Scholar 

  • Coderre L, Srivastava AK (2004) Vanadium and the cardiovascular functions. Can J Physiol Pharmacol 82:833–839

    Article  CAS  PubMed  Google Scholar 

  • Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim H, Smithies O, Le TH, Coffman TM (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. PNAS. https://doi.org/10.1073/pnas.0605545103

    Article  PubMed  PubMed Central  Google Scholar 

  • Domingo L (2002) Vanadium and tungsten derivatives as antidiabetic agents. Biol Trace Elem Res 88:1–16

    Article  Google Scholar 

  • Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, Di Tullio MR (2008) Association between diabetes mellitus and left ventricular hypertrophy in a multi-ethnic population. Am J Cardiol 101:1787–1791

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg IJ (2001) Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab 83:965–971

    Article  Google Scholar 

  • Grisanti LA (2018) Diabetes and arrhythmias: pathophysiology, mechanisms and therapeutic outcomes. Front Physiol 9:1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Investig 128:45–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyliger CE, Tahilliani AG, Mcneill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 277:1474–1477

    Article  Google Scholar 

  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 2016:9

    Article  CAS  Google Scholar 

  • Imura H, Shimada A, Naota M, Morita T, Togawa M, Hasegawa T, Seko Y (2012) Vanadium toxicity in mice: possible impairment of lipid metabolism and mucosal epithelial cell necrosis in the small intestine. Toxicol Pathol 41:842–856

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y, Miyazono K, Miyazawa K (2010) Smad7 inhibits transforming growth factor-β family type I receptors through two distinct modes of interaction. J Biol Chem 258:30804–30813

    Article  CAS  Google Scholar 

  • Kim ME, Han K, Joung HN, Baek K, Song K, Kwon H (2019) Cholesterol levels and development of cardiovascular disease in Koreans with type 2 diabetes mellitus and without pre-existing cardiovascular disease. Cardiovasc Diabetol. https://doi.org/10.1186/s12933-019-0943-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Komolafe O, Adeyemi O, Adewole S, Obuotor E (2001) Streptozotocin-induced diabetes alters the serum lipid profiles of adult wistar rats. Internet J Cardiovasc Res 7:1066–1084

    Google Scholar 

  • Lenzen S (2007) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  PubMed  CAS  Google Scholar 

  • Leon BM, Maddox TM (2015) Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6:1246–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JH, Huang XR, Zhu HJ, Johnson R, Lan Y (2003) Role of TGF-β signaling in extracellular matrix production under high glucose conditions. Kidney Int 43:2010–2019

    Article  Google Scholar 

  • Lindschau C, Quass P, Menne J, Güler F, Fiebeler A, Leitges M, Luft FC, Haller H (2003) Glucose-induced TGF-β1 and TGF-β receptor-1 expression in vascular smooth muscle cells is mediated by protein kinase C-α. Hypertension 42:335–341

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Andresa N, Fortunob MA, Diezb J, Zannada F, Lacolleya P, Rossignola P (2010) Vascular effects of cardiotrophin-1: a role in hypertension? J Hypertens 10:1261–1272

    Google Scholar 

  • Madlala HP, Van Heerden FR, Mubagwa K, Musabayane CT (2015) Changes in renal function and oxidative status associated with the hypotensive effects of oleanolic acid and related synthetic derivatives in experimental animals. PLoS ONE 10:e0128192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manhiani MM, Sheppard TA, Brands MW (2012) Mechanism for sodium retention by insulin + glucose in diabetes may involve renal epithelial sodium channels (ENaC). FASEB J 26:867

    Google Scholar 

  • Mannucci E, Dicembrin I, Lauria A, Pozzilli E (2013) Is glucose control important for prevention of cardiovascular disease in diabetes? Am Diabetes Assoc 36:259–263

    Google Scholar 

  • Matsunami T, Sato Y, Sato T, Yukawa M (2010) Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure. Physiol Res 59:97–104

    Article  CAS  PubMed  Google Scholar 

  • Mkhwanazi BN, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT (2014) Antioxidant effects of maslinic acid in livers, hearts and kidneys of streptozotocin-induced diabetic rats: effects on kidney function. Ren Fail 36:419–431

    Article  CAS  PubMed  Google Scholar 

  • Moodahadu LS, Dhall R, Zargar AH, Bangera S, Ramani L, Katipally R (2014) Tight glycemic control and cardiovascular effects in type 2 diabetic patients. Heart Views 15:111–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Musabayane CT, Munjeri O, Bwititi P, Osim EE (2000) Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentrations of insulin in streptozotocin-diabetic rats. J Endocrinol 164:1–6

    Article  CAS  PubMed  Google Scholar 

  • Muthaian R, Pakirisamy RM, Parasuraman S, Raveendran R (2016) Hypertension influences the exponential progression of inflammation and oxidative stress in streptozotocin-induced diabetic kidney. J Pharmacol Pharmacother 7:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki K, Terayama Y, Matsuura T, Narama I (2018) Effect of combined dyslipidemia and hyperglycemia on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats. J Toxicol Pathol 31:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quezada M, Wang J, Hoang V, Mcgee EA (2012) Smad7 is a transforming growth factor-beta–inducible mediator of apoptosis in granulosa cells. Fertil Steril 97:1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Renfrew AK (2014) Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Mettalomics 6:1324–1335

    Article  CAS  Google Scholar 

  • Reul BA, Amin SS, Buchet J, Ongemba LN, Crans DC, Brichard SM (1999) Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 126:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Mallick S, Chakraborty T, Ghosh N, Singh AK, Manna S, Majumdar S (2015) Synthesis, characterisation and antioxidant activity of luteolin–vanadium(II) complex. Food Chem 173:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93

    Article  CAS  PubMed  Google Scholar 

  • Sakellarios AI, Siogkas P, Exarchos T, Stefanou K, Bourantas CV, Athanasio L, Fotiou E, Papafaklis M, Naka KK, Michalis LK, Fotiadis DI (2011) Modelling LDL accumulation in the case of endothelial dysfunction. J Serb Soc Comput Mech 5:90–100

    Google Scholar 

  • Savithri K, Revanasiddappa HD (2018) Synthesis and characterization of oxidovanadium(IV) complexes of 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-6-methoxyphenol and their antimicrobial, antioxidant, and DNA-binding studies. Bioinorg Chem Appl. https://doi.org/10.1155/2018/2452869

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B (2010) Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 3:91–100

    CAS  Google Scholar 

  • Shechter Y, Karlish S (1980) Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284:556–558

    Article  CAS  PubMed  Google Scholar 

  • Shinde UA, Sharma G, Goyal RK (2004) In vitro insulin mimicking action of bis(maltolato)oxovanadium (IV). Indian J Pharm Sci 66:392–395

    CAS  Google Scholar 

  • Sibiya NH (2014a) The effects of oxidovanadium complexes on glucose metabolism in liver and skeletal muscle cell lines. Master of Medical Science, Univesity of Kwazulu Natal

  • Sibiya NH (2014b) The effects of oxidovanadium complexes on glucose metabolism in liver and skeletal muscle cell lines. University of KwaZulu Natal

  • Silva BR, Pernomian L, Bendhack LM (2012) Contribution of oxidative stress to endothelial dysfunction in hypertension. Front Physiol 3:1–5

    Article  Google Scholar 

  • Srivastava AK (2000) Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem 206:177–182

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Mehdi MZ (2004) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabetes Med 22:2–13

    Article  CAS  Google Scholar 

  • Strout HV, Vicario PP, Biswas C, Saperstein R, Brady EJ, Pilch PF, Berger J (1990) Vanadate treatment of streptozotocin diabetic rats restores expression of the insulin-responsive glucose transporter in skeletal muscle. Endocrinology 126:2728–2732

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam G (2015) Effect of vanadium supplementation on high fat diet induced hyperlipidemia. Heart Rythm 67:125

    Google Scholar 

  • Sun RW, Ma D, Wong EL, Che C (2007a) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 2007:4884–4892

    Google Scholar 

  • Sun RW, Ma DL, Wong EL, Che CM (2007b) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 43:4884–4892

    Google Scholar 

  • Takeuchi K, Mcgowan FXJ, Glynn P, Moran AM, Rader CM, Cao-Danh H, Del Nido PJ (1998) Glucose transporter upregulation improves ischemic tolerance in hypertrophied failing heart. Circulation 98:11234–11241

    Google Scholar 

  • Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Manuel Perez-Aguilar J, González-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188:68–98

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Lapage J, Hirschberg R (1999) Glomerular ultrafiltration of IGF-I may contribute to increased renal sodium retention in diabetic nephropathy. Transl Res 134:154–160

    CAS  Google Scholar 

  • WHO (1999) Definition, diagnosis and classification of diabetes mellitus and its complications

Download references

Acknowledgements

The authors are grateful to the Biomedical Research Unity (BRU), University of KwaZulu Natal for the supply and housing of the animals, as well as the Chemistry department for synthesising the vanadium compound used in this study.

Funding

This study was partly funded by NRF South Africa, Incentive Funding for Rated Researchers NRF and the University of KwaZulu-Natal, College of Health Sciences research division. The views expressed are those of the authors and should not be attributed to the DST, NRF or the University of KwaZulu-Natal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonisiwe Mbatha.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest to disclose.

Ethics approval

All animal experimentation was reviewed and approved by the Animal Research Ethics Committee of the University of KwaZulu-Natal (AREC/054/017D).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbatha, B., Khathi, A., Sibiya, N. et al. Cardio-protective effects of a dioxidovanadium(V) complex in male sprague–dawley rats with streptozotocin-induced diabetes. Biometals 34, 161–173 (2021). https://doi.org/10.1007/s10534-020-00270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-020-00270-0

Keywords

Navigation