Skip to main content

Advertisement

Log in

Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This work presents an experimental investigation on the use of CNT/Al\(_{2}\)O\(_{3}\) hybrid nanoparticles in a Photovoltaic/ Thermal (PV/T) system to enhance the photovoltaic electrical efficiency by reducing the temperature of PV cell. An experimental comparison on thermal and electrical efficiency of PV panel with and without cooling is experimentally analyzed. Furthermore, instead of using a serpentine tube collector, a spiral tube collector is used to enhance the rate of heat transfer from the photovoltaic panel. From the experimental results it is found that the enhancement is observed in the average electrical efficiency with water and nanofluid in the spiral tube collector and found as 7.15 and 8.2% respectively, whereas, the standalone photo voltaic panel it is found as 6.2%. The efficient removal of heat from the collector increased the power production by 11.7 and 21.4% using water and hybrid nanofluid in the PV/T system respectively, while compared to standalone PV system. Similarly, the overall PV/T efficiency using hybrid nanofluids in the spiral tube collector enhances by 27.3% than using water medium. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PV/T:

Photovoltaic/thermal

C\(_{p\ }\) :

Specific heat capacity (kJ/kg K)

T\(_{out\ }\) :

Exit temperature (\(^{o}\)C)

T\(_{in\ }\) :

Inlet temperature (\(^{o}\)C)

m\(_{f\ }\) :

Mass flow rate (kg/s)

V:

Voltage (Volt)

I:

Current (Ampere)

I(t):

Solar intensity (W/m\(^{2}\))

Ac:

Collector area (m\(^{2}\))

Q\(_{u}\) :

Useful energy (Watts)

References

  • Abdallah SR, Saidani-Scott H, Abdellatif OE (2019) Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Solar Energy 181:108–115

    Article  CAS  Google Scholar 

  • Aberoumand S, Ghamari S, Shabani B (2018) Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: an experimental study. Solar Energy 165:167–177

    Article  CAS  Google Scholar 

  • Al-Shamani AN, Sopian K, Mat S, Hasan HA, Abed AM, Ruslan MH (2016) Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers Manag 124:528–542. https://doi.org/10.1016/j.enconman.2016.07.052

    Article  CAS  Google Scholar 

  • Al-Waeli Ali HA (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag 151:693–708

    Article  CAS  Google Scholar 

  • Al-Waeli Ali HA (2018) Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Solar Energy 162:378–396

    Article  CAS  Google Scholar 

  • Al-Waeli Ali HA (2018) Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant. Energy 151:33–44

    Article  CAS  Google Scholar 

  • Al-Waeli Ali HA (2019) Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud Therm Eng 13:100392–100392

    Article  Google Scholar 

  • Al-Waeli Ali HA (2019) Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud Therm Eng 13:100340–100340

    Article  Google Scholar 

  • Al-Waeli Ali HA (2019) Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Solar Energy 177:178–191

    Article  CAS  Google Scholar 

  • Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K (2017) Comparative study to use nano-(Al 2 O 3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag 148:963–973. https://doi.org/10.1016/j.enconman.2017.06.072

    Article  CAS  Google Scholar 

  • An W (2016) Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Apple Energy 184:197–206

    Article  CAS  Google Scholar 

  • An W (2016) Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test. Renew Energy 86:633–642

    Article  CAS  Google Scholar 

  • Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experim Therm Fluid Sci 34(2):210–216. https://doi.org/10.1016/j.expthermflusci.2009.10.022

    Article  CAS  Google Scholar 

  • Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K (2007) Photovoltaic thermal (PV/T) collectors: a review. Appl Therm Eng 27(2–3):275–286

    Article  CAS  Google Scholar 

  • Chowdhury MS, Zheng W, Kumari S, Heyman J, Zhang X, Dey P, Weitz DA, Haag R (2019) Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nature Commun 10(1):1–10. https://doi.org/10.1038/s41467-019-12462-5

    Article  CAS  Google Scholar 

  • Cui Y, Zhu Q (2012) Study of photovoltaic/thermal systems with MgO-water nanofluids flowing over silicon solar cells. Asia-Pacific Power Energy Eng Conf. https://doi.org/10.1109/APPEEC.2012.6307203

    Article  Google Scholar 

  • Devarajan M, Krishnamurthy NP, Balasubramanian M, Ramani B, Wongwises S, El-Naby KA, Sathyamurthy R (2018) Thermophysical properties of CNT and CNT/Al2O3 hybrid nanofluid. Micro Nano Lett 13(5):617–621. https://doi.org/10.1049/mnl.2017.0029

    Article  CAS  Google Scholar 

  • Du M, Tang GH, Wang TM (2019) Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing. Solar Energy 183:501–511. https://doi.org/10.1016/j.solener.2019.03.057

    Article  CAS  Google Scholar 

  • Ebaid MS, Ghrair AM, Al-Busoul M (2018) Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylammonium bromide mixture. Energy Convers Manag 155:324–343

    Article  CAS  Google Scholar 

  • Evans DL (1981) Simplified method for predicting photovoltaic array output. Solar Energy 27(6):555–560. https://doi.org/10.1016/0038-092X(81)90051-7

    Article  Google Scholar 

  • Fayaz H, Nasrin R, Rahim NA, Hasanuzzaman M (2018) Energy and exergy analysis of the PVT system: effect of nanofluid flow rate. Solar Energy 169:217–230

    Article  CAS  Google Scholar 

  • Ghadiri M, Sardarabadi M, Pasandideh-fard M, Moghadam AJ (2015) Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag 103:468–476

    Article  CAS  Google Scholar 

  • Ghadiri M, Sardarabadi M, Pasandideh-fard M, Moghadam AJ (2015) Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag 103:468–476. https://doi.org/10.1016/j.enconman.2015.06.077

    Article  CAS  Google Scholar 

  • Good C (2016) Environmental impact assessments of hybrid photovoltaic-thermal (PV/T) systems-A review. Renew Sustain Energy Rev 55:234–239

    Article  Google Scholar 

  • Hasan HA, Sopian K, Jaaz AH, Al-Shamani AN (2017) Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector. Solar Energy 144:321–334. https://doi.org/10.1016/j.solener.2017.01.036

    Article  CAS  Google Scholar 

  • Hasan MA, Sumathy K (2010) Photovoltaic thermal module concepts and their performance analysis: a review. Renew Sustain Energy Rev 14(7):1845–1859

    Article  Google Scholar 

  • Hassani S, Saidur R, Mekhilef S, Taylor RA (2016) Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energy Convers Manag 123:431–444

    Article  CAS  Google Scholar 

  • Hjerrild NE, Scott JA, Amal R, Taylor RA (2018) Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications. Renew Energy 120:266–274. https://doi.org/10.1016/j.renene.2017.12.073

    Article  CAS  Google Scholar 

  • Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M (2018) Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers Manag 160:93–108

    Article  CAS  Google Scholar 

  • Hussien HA, Noman AH, Abdulmunem AR (2015) Indoor investigation for improving the hybrid photovoltaic/thermal system performance using nanofluid (Al2O3-water). Eng Technol J 33:889–901

    Google Scholar 

  • Jia Y, Ran F, Zhu C, Fang G (2020) Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy 196:625–636

    Article  CAS  Google Scholar 

  • Karami N, Rahimi M (2014) Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid. Int Commun Heat Mass Transfer 55:45–52. https://doi.org/10.1016/j.icheatmasstransfer.2014.04.009

    Article  CAS  Google Scholar 

  • Karami N, Rahimi M (2014) Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energy Convers Manag 86:275–285. https://doi.org/10.1016/j.enconman.2014.05.037

    Article  CAS  Google Scholar 

  • Khanjari Y, Pourfayaz F, Kasaeian AB (2016) Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers Manag 122:263–278. https://doi.org/10.1016/j.enconman.2016.05.083

    Article  CAS  Google Scholar 

  • Lelea D (2015) The hybrid nanofluid/microchannel cooling solution for concentrated photovoltaic cells. AIP Conference Proceedings 1646(1)

  • Michael JJ, Iniyan S (2015) Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide – water nanofluid. Solar Energy 119:439–451. https://doi.org/10.1016/j.enconman.2016.07.0523

    Article  CAS  Google Scholar 

  • Moradi K, Ebadian MA, Lin CX (2013) A review of PV/T technologies: effects of control parameters. Int J Heat Mass Transfer 64:483–500

    Article  Google Scholar 

  • Noghrehabadi A, Hajidavalloo E, Moravej M (2016) Experimental investigation of efficiency of square flat-plate solar collector using SiO 2 /water nanofluid. Case Stud Therm Eng 8:378–386. https://doi.org/10.1016/j.csite.2016.08.006

    Article  Google Scholar 

  • Radwan A, Ahmed M, Ookawara S (2016) Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers Manag 119:289–303. https://doi.org/10.1016/j.enconman.2016.04.045

    Article  CAS  Google Scholar 

  • Rahmanian S, Hamzavi A (2020) Effects of pump power on performance analysis of photovoltaic thermal system using CNT nanofluid. Solar Energy 201:787–797

    Article  CAS  Google Scholar 

  • Rejeb O, Sardarabadi M, Ménézo C, Passandideh-Fard M, Dhaou MH, Jemni A (2016) Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers Manag 110:367–377. https://doi.org/10.1016/j.enconman.2015.11.063

    Article  CAS  Google Scholar 

  • Said Z (2015) Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod 92:343–353

    Article  CAS  Google Scholar 

  • Sardarabadi M, Passandideh-Fard M (2016) Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Solar Energy Mater Solar Cells 157:533–542. https://doi.org/10.1016/j.solmat.2016.07.008

    Article  CAS  Google Scholar 

  • Sardarabadi M, Passandideh-Fard M, Heris SZ (2014) Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 66:264–272

    Article  CAS  Google Scholar 

  • Sardarabadi M, Passandideh-Fard M, Maghrebi MJ, Ghazikhani M (2017) Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Solar Energy Mater Solar Cells 161:62–69. https://doi.org/10.1016/j.solmat.2016.11.032

    Article  CAS  Google Scholar 

  • Saroha S (2015) Theoretical analysis and testing of nanofluids-based solar photovoltaic/thermal hybrid collector. J Heat Transfer 137(9):

  • Soltani S, Kasaeian A, Sarrafha H, Wen D (2017) An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Solar Energy 155:1033–1043. https://doi.org/10.1016/j.solener.2017.06.0699

    Article  CAS  Google Scholar 

  • Xu Z, Kleinstreuer C (2014) Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manag 87:504–512. https://doi.org/10.1016/j.enconman.2014.07.047

    Article  Google Scholar 

  • Yang R, Gong Z, Zhang X, Que L (2019) Single-walled carbon nanotubes (SWCNTs) and Poly(3,4-ethylenedioxythiophene) nanocomposite microwire-based electronic biosensor fabricated by microlithography and layer-by-layer nanoassembly. J Nanosci Nanotechnol 19(12):7591–7595. https://doi.org/10.1166/jnn.2019.16752

    Article  CAS  Google Scholar 

  • Zhang X, Zhao X, Smith S, Xu J, Yu X (2012) Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew Sustain Energy Rev 16(1):599–617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Chamkha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyamurthy, R., Kabeel, A.E., Chamkha, A. et al. Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids. Appl Nanosci 11, 363–374 (2021). https://doi.org/10.1007/s13204-020-01598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01598-2

Keywords

Navigation