Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T04:00:41.017Z Has data issue: false hasContentIssue false

Monteneroite, Cu2+Mn2+2(AsO4)2⋅8H2O, a new vivianite-structure mineral with ordered cations from the Monte Nero mine, Liguria, Italy

Published online by Cambridge University Press:  28 September 2020

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah84112, USA
Marco E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, via San Pietro 55, I–10073 Devesi–Cirié, Torino, Italy Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Tommaso Valperga Caluso 35, I–10125Torino, Italy
Fabrizio Castellaro
Affiliation:
via XXV Aprile 28, I–16046Mezzanego, Italy
Luigi Chiappino
Affiliation:
via Palmanova 67, I–20132Milano, Italy
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

Monteneroite (IMA2020-028), Cu2+Mn2+2(AsO4)2⋅8H2O, is a new vivianite-structure mineral from the Monte Nero mine, Rocchetta di Vara, La Spezia, Liguria, Italy. It is a secondary mineral that crystallised from As-, Cu- and Mn-rich fluids and it is associated with braunite, copper, cuprite, rhodochrosite and strashimirite. Monteneroite occurs as light green, thick blades up to ~2.5 mm long. The streak is white. Crystals are transparent with vitreous lustre. The mineral has Mohs hardness of 2, is somewhat sectile, exhibits two cleavages ({010} perfect and {001} fair) and has irregular stepped fracture. The measured density is 2.97(2) g cm–3. Monteneroite is optically biaxial (+), with α = 1.604(2), β = 1.637(2) and γ = 1.688(2), determined in white light; 2V = 80(1)°; slight dispersion is r < v, orientation: X = b; Z ^ c = 52° in obtuse β. Electron microprobe analyses provided the empirical formula (Cu2+0.88Mn2+0.11)Σ0.99Mn2+2.00(As1.00O4)2⋅8H2O. Monteneroite is monoclinic, C2/m, a = 10.3673(14), b = 13.713(2), c = 4.8420(8) Å, β = 105.992(8)°, V = 661.72(18) Å3 and Z = 2. Monteneroite has a vivianite-type structure (R1 = 0.0535 for 534 I > 2σI reflections). It is the first mineral with this structure type to be defined with ordered octahedral cation sites.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: David Hibbs

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1990) Handbook of Mineralogy IV, Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, Arizona, pp 1680.Google Scholar
Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Callegari, A.M., Boiocchi, M., Ciriotti, M. and Balestra, C. (2012) Coralloite, Mn2+Mn3+2(AsO4)2(OH)2⋅4H2O, a new mixed valence Mn hydrate arsenate: Crystal structure and relationships with bermanite and whitmoreite mineral groups. American Mineralogist, 97, 727734.CrossRefGoogle Scholar
Dana, J.D. (1850) Köttigite. Pp. 487 in: A System of Mineralogy, 3rd Edition. Putnam, George P., New York and London.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gabrielson, O. (1954) Manganiferous hoernesite and manganese-hoernesite from Långban, Sweden. Arkiv für Mineralogi och Geologi, 1, 333337.Google Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Hill, R.J. (1979) The crystal structure of köttigite. American Mineralogist, 64, 376382.Google Scholar
Hoppe, R. (1979) Effective coordination number (ECoN) and mean-fictive ionic radii (Mefir). Zeitschrift für Kristallographie, 150, 2352.CrossRefGoogle Scholar
Ito, T., Minato, H. and Sakurai, K (1954) Parasymplesite, a new mineral polymorphous with symplesite. Proceedings of the Japan Academy, 30, 318324.CrossRefGoogle Scholar
Jambor, J.L. and Dutrizac, J.E. (1995) Solid solutions in annabergite–erythrite–hörnesite synthetic system. The Canadian Mineralogist, 33, 10631071.Google Scholar
Kampf, A.R., Cámara, F., Ciriotti, M.E., Nash, B.P., Balestra, C. and Chiappino, L. (2016) Castellaroite, Mn2+3(AsO4)2⋅4.5H2O, a new mineral from Italy related to metaswitzerite. European Journal of Mineralogy, 28, 687696.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Nash, B.P., Ciriotti, M.E., Castellano, F. and Chiappino, L. (2020) Monteneroite, IMA 2020-028. CNMNC Newsletter No. 56; Mineralogical Magazine, 84, 623627.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Marescotti, P. and Cabella, R. (1996) Significance of chemical variations in a chert sequence of the “Diaspri di Monte Alpe” formation (Val Graveglia, northern Apennine, Italy). Ofiolit, 21, 139144.Google Scholar
Palache, C., Berman, H. and Frondel, C (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, Volume II. Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, etc. John Wiley & Sons, New York, pp. 1755.Google Scholar
Plášil, J., Škácha, P., Sejkora, J., Škoda, R., Novák, M., Veselovský, F. and Hloušek, J. (2017) Babánekite, Cu3(AsO4)2⋅8H2O, from Jachymov, Czech Republic – a new member of the vivianite group. Journal of Geosciences, 62, 261270.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Sturman, B.D. (1976) New data for köttigite and parasymplesite. The Canadian Mineralogist, 14, 437441.Google Scholar
Wildner, M., Giester, G., Lengauer, C.L. and McCammon, C.A. (1996) Structure and crystal chemistry of vivianite-type compounds: crystal structures of erythrite and annabergite with a Mössbauer study of erythrite. European Journal of Mineralogy, 8, 187192.CrossRefGoogle Scholar
Yakubovich, O.V., Massa, W., Liferovich, R.P. and McCammon, C.A. (2001) The crystal structure of barićite, (Mg1.70Fe1.30) (PO4)2⋅8H2O, the magnesium-dominant member of the vivianite group. The Canadian Mineralogist, 39, 13171324.CrossRefGoogle Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 77.7 KB