Skip to main content

Advertisement

Log in

The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The membrane-bound transport proteins responsible for oxalate secretion across the large intestine remain unidentified. The apical chloride/bicarbonate (Cl/HCO3) exchanger encoded by Slc26a6, known as PAT-1 (putative anion transporter 1), is a potential candidate. In the small intestine, PAT-1 makes a major contribution to oxalate secretion but whether this role extends into the large intestine has not been directly tested. Using the PAT-1 knockout (KO) mouse, we compared the unidirectional absorptive (\( {J}_{ms}^{ion} \)) and secretory (\( {J}_{sm}^{ion} \)) flux of oxalate and Cl across cecum, proximal colon, and distal colon from wild-type (WT) and KO mice in vitro. We also utilized the non-specific inhibitor DIDS (4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid) to confirm a role for PAT-1 in WT large intestine and (in KO tissues) highlight any other apical anion exchangers involved. Under symmetrical, short-circuit conditions the cecum and proximal colon did not transport oxalate on a net basis, whereas the distal colon supported net secretion. We found no evidence for the participation of PAT-1, or indeed any other DIDS-sensitive transport mechanism, in oxalate or Cl by the large intestine. Most unexpectedly, mucosal DIDS concurrently stimulated \( {J}_{ms}^{Ox} \) and \( {J}_{sm}^{Ox} \) by 25–68% across each segment without impacting net transport. For the colon, these changes were directly proportional to increased transepithelial conductance suggesting this response was the result of bidirectional paracellular flux. In conclusion, PAT-1 does not contribute to oxalate or Cl transport by the large intestine, and we urge caution when using DIDS with mouse colonic epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alper SL, Stewart AK, Vandorpe DH, Clark JS, Horack RZ, Simpson JE, Walker NM, Clarke LL (2011) Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange. Am J Phys Cell Phys 300:C276–C286. https://doi.org/10.1152/ajpcell.00366.2010

    Article  CAS  Google Scholar 

  2. Alvarez BV, Vilas GL, Casey JR (2005) Metabolon disruption: a mechanism that regulates bicarbonate transport. EMBO J 24:2499–2511. https://doi.org/10.1038/sj.emboj.7600736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderle P, Sengstag T, Mutch DM, Rumbo M, Praz V, Mansourian R, Delorenzi M, Williamson G, Roberts MA (2005) Changes in the transcriptional profile of transporters in the intestine along the anterior-posterior and crypt-villus axes. BMC Genomics 6. https://doi.org/10.1186/1471-2164-6-69

  4. Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M, Karrar E, Roy-Chowdhury J, Musch M, Asplin J, Chang E, Hassan H (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28:876–887. https://doi.org/10.1681/asn.2016020132

    Article  CAS  PubMed  Google Scholar 

  5. Arvans D, Alshaikh A, Bashir M, Weber C, Hassan H (2020) Activation of the PKA signaling pathway stimulates oxalate transport by human intestinal Caco2-BBE cells. Am J Phys Cell Phys 318:C372–C379. https://doi.org/10.1152/ajpcell.00135.2019

    Article  CAS  Google Scholar 

  6. Asplin JR (2002) Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin N Am 31:927–949. https://doi.org/10.1016/s0889-8529(02)00030-0

    Article  CAS  Google Scholar 

  7. Barmeyer C, Harren M, Schmitz H, Heinzel-Pleines U, Mankertz J, Seidler U, Horak I, Wiedenmann B, Fromm M, Schulzke JD (2004) Mechanisms of diarrhea in the interleukin-2-deficient mouse model of colonic inflammation. Am J Physiol Gastrointest Liver Physiol 286:G244–G252. https://doi.org/10.1152/ajpgi.00141.2003

    Article  CAS  PubMed  Google Scholar 

  8. Barmeyer C, Ye JHQ, Sidani S, Geibel J, Binder HJ, Rajendran VM (2007) Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells. Pflugers Arch 454:441–450. https://doi.org/10.1007/s00424-007-0213-7

    Article  CAS  PubMed  Google Scholar 

  9. Barton LL, Ritz NL, Fauque GD, Lin HC (2017) Sulfur cycling and the intestinal microbiome. Dig Dis Sci 62:2241–2257. https://doi.org/10.1007/s10620-017-4689-5

    Article  CAS  PubMed  Google Scholar 

  10. Binder HJ, Foster ES, Budinger ME, Hayslett JP (1987) Mechanism of electroneutral sodium-chloride absorption in distal colon of the rat. Gastroenterology 93:449–455

    Article  CAS  Google Scholar 

  11. Cabantchik ZI, Greger R (1992) Chemical probes for anion transporters of mammalian-cell membranes. Am J Phys Cell Phys 262:C803–C827

    Article  CAS  Google Scholar 

  12. Canales BK, Hatch M (2014) Kidney stone incidence and metabolic urinary changes after modern bariatric surgery: review of clinical studies, experimental models, and prevention strategies. Surg Obes Relat Dis 10:734–742. https://doi.org/10.1016/j.soard.2014.03.026

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3. https://doi.org/10.3389/fphys.2012.00448

  14. Charney AN, Egnor RW, Alexander-Chacko JT, Zaharia V, Mann EA, Giannella RA (2001) Effect of E-coli heat-stable enterotoxin on colonic transport in guanylyl cyclase C receptor-deficient mice. Am J Physiol Gastrointest Liver Physiol 280:G216–G221

    Article  CAS  Google Scholar 

  15. Charney AN, Egnor RW, Steinbrecher KA, Cohen MB (2004) Effect of secretagogues and pH on intestinal transport in guanylin-deficient mice. Biochim Biophys Acta Gen Subj 1671:79–86. https://doi.org/10.1016/j.bbagen.2004.01.007

    Article  CAS  Google Scholar 

  16. Chatterjee I, Kumar A, Castilla-Madrigal RM, Pellon-Cardenas O, Gill RK, Alrefai WA, Borthakur A, Verzi M, Dudeja PK (2017) CDX2 upregulates SLC26A3 gene expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 313:G256–G264. https://doi.org/10.1152/ajpgi.00108.2017

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chernova MN, Jiang LW, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL (2003) Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol 549:3–19. https://doi.org/10.1113/jphysiol.2003.039818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chernova MN, Jiang LW, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH, Alper SL (2005) Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants - differences in anion selectivity, regulation, and electrogenicity. J Biol Chem 280:8564–8580. https://doi.org/10.1074/jbc.M411703200

    Article  CAS  PubMed  Google Scholar 

  19. Choshniak I, Mualem R (1997) SCFA and electrolyte absorption in the colon of three rodent species. Comp Biochem Physiol A Mol Integr Physiol 118:381–384. https://doi.org/10.1016/s0300-9629(96)00323-4

    Article  CAS  Google Scholar 

  20. Clark JS, Vandorpe DH, Chernova MN, Heneghan JF, Stewart AK, Alper SL (2008) Species differences in Cl- affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl- exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol-London 586:1291–1306. https://doi.org/10.1113/jphysiol.2007.143222

    Article  CAS  PubMed  Google Scholar 

  21. Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Investig 115:2598–2608. https://doi.org/10.1172/jci26662

    Article  CAS  PubMed  Google Scholar 

  22. Feldman GM, Koethe JD, Stephenson RL (1990) Base secretion in rat distal colon - ionic requirements. Am J Physiol Gastrointest Liver Physiol 258:G825–G832

    Article  CAS  Google Scholar 

  23. Freel RW, Hatch M, Earnest DL, Goldner AM (1980) Oxalate transport across the isolated rat colon. A re-examination. Biochim Biophys Acta 600:838–843

    Article  CAS  Google Scholar 

  24. Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290:G719–G728. https://doi.org/10.1152/ajpgi.00481.2005

    Article  CAS  PubMed  Google Scholar 

  25. Freel RW, Morozumi M, Hatch M (2009) Parsing apical oxalate exchange in Caco-2BBe1 monolayers: siRNA knockdown of SLC26A6 reveals the role and properties of PAT-1. Am J Physiol Gastrointest Liver Physiol 297:G918–G929. https://doi.org/10.1152/ajpgi.00251.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freel RW, Whittamore JM, Hatch M (2013) Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am J Physiol Gastrointest Liver Physiol 305:G520–G527. https://doi.org/10.1152/ajpgi.00167.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson GR, Macfarlane GT, Cummings JH (1993) Sulfate reducing bacteria and hydrogen metabolism in the human large-intestine. Gut 34:437–439. https://doi.org/10.1136/gut.34.4.437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldfarb DS, Egnor RW, Charney AN (1988) Effects of acid-base variables on ion-transport in rat colon. J Clin Investig 81:1903–1910. https://doi.org/10.1172/jci113537

    Article  CAS  PubMed  Google Scholar 

  29. Hatch M (2017) Gut microbiota and oxalate homeostasis. Ann Transl Med 5. https://doi.org/10.21037/atm.2016.12.70

  30. Hatch M (2020) Induction of enteric oxalate secretion by Oxalobacter formigenes in mice does not require the presence of either apical oxalate transport proteins Slc26A3 or Slc26A6. Urolithiasis 48:1–8. https://doi.org/10.1007/s00240-019-01144-y

    Article  PubMed  Google Scholar 

  31. Hatch M, Freel RW (2003) Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urol Res 31:426–432. https://doi.org/10.1007/s00240-003-0367-5

    Article  CAS  PubMed  Google Scholar 

  32. Hatch M, Freel RW (2003) Renal and intestinal handling of oxalate following oxalate loading in rats. Am J Nephrol 23:18–26. https://doi.org/10.1159/000066300

    Article  CAS  PubMed  Google Scholar 

  33. Hatch M, Freel RW (2005) Intestinal transport of an obdurate anion: oxalate. Urol Res 33:1–16. https://doi.org/10.1007/s00240-004-0445-3

    Article  CAS  PubMed  Google Scholar 

  34. Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 28:143–151. https://doi.org/10.1016/j.semnephrol.2008.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatch M, Freel RW (2013) A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41:379–384. https://doi.org/10.1007/s00240-013-0601-8

    Article  CAS  PubMed  Google Scholar 

  36. Hatch M, Vaziri ND (1994) Do thiazides reduce intestinal oxalate absorption - a study in-vitro using rabbit colon. Clin Sci 86:353–357

    Article  CAS  Google Scholar 

  37. Hatch M, Freel RW, Goldner AM, Earnest DL (1984) Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut 25:232–237

    Article  CAS  Google Scholar 

  38. Hatch M, Freel RW, Vaziri ND (1993) Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflugers Arch 423:206–212. https://doi.org/10.1007/bf00374396

    Article  CAS  PubMed  Google Scholar 

  39. Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 5:1339–1343

    CAS  PubMed  Google Scholar 

  40. Hatch M, Freel RW, Vaziri ND (1994) Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Arch 426:101–109

    Article  CAS  Google Scholar 

  41. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW (2006) Oxalobacter sp reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69:691–698. https://doi.org/10.1038/sj.ki.5000162

    Article  CAS  PubMed  Google Scholar 

  42. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300:G461–G469. https://doi.org/10.1152/ajpgi.00434.2010

    Article  CAS  PubMed  Google Scholar 

  43. Hoglund P, Haila S, Socha J, Tomaszewski L, SaarialhoKere U, KarjalainenLindsberg ML, Airola K, Holmberg C, dela Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–319. https://doi.org/10.1038/ng1196-316

    Article  CAS  PubMed  Google Scholar 

  44. Holmes RP, Assimos DG (2004) The impact of dietary oxalate on kidney stone formation. Urol Res 32:311–316. https://doi.org/10.1007/s00240-004-0437-3

    Article  CAS  PubMed  Google Scholar 

  45. Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Seidler U (2002) Down-regulated in adenoma mediates apical Cl-/HCO3- exchange in rabbit, rat, and human duodenum. Gastroenterology 122:709–724. https://doi.org/10.1053/gast.2002.31875

    Article  CAS  PubMed  Google Scholar 

  46. Jiang Z, Grichtchenko I, Boron WF, Aronson PS (2002) Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277:33963–33967. https://doi.org/10.1074/jbc.M202660200

    Article  CAS  PubMed  Google Scholar 

  47. Jiang ZR, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38:474–478. https://doi.org/10.1038/ng1762

    Article  CAS  PubMed  Google Scholar 

  48. Juric M, Xiao F, Amasheh S, May O, Wahl K, Bantel H, Manns MP, Seidler U, Bachmann O (2013) Increased epithelial permeability is the primary cause for bicarbonate loss in inflamed murine colon. Inflamm Bowel Dis 19:904–911. https://doi.org/10.1097/MIB.0b013e3182813322

    Article  PubMed  Google Scholar 

  49. Kawamata K, Hayashi H, Suzuki Y (2006) Chloride-dependent bicarbonate secretion in the mouse large intestine. Biomed Res-Tokyo 27:15–21. https://doi.org/10.2220/biomedres.27.15

    Article  CAS  Google Scholar 

  50. Klimesova K, Whittamore JM, Hatch M (2015) Bifidobacterium animalis subsp lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 43:107–117. https://doi.org/10.1007/s00240-014-0728-2

    Article  CAS  PubMed  Google Scholar 

  51. Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS (2001) Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci U S A 98:9425–9430. https://doi.org/10.1073/pnas.141241098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ko SBH, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S (2002) A molecular mechanism for aberrant CFTR-dependent HCO3- transport in cystic fibrosis. EMBO J 21:5662–5672. https://doi.org/10.1093/emboj/cdf580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS (2012) Sat1 is dispensable for active oxalate secretion in mouse duodenum. Am J Phys Cell Phys 303:C52–C57. https://doi.org/10.1152/ajpcell.00385.2011

    Article  CAS  Google Scholar 

  54. Kumar A, Anbazhagan AN, Coffing H, Chatterjee I, Priyamvada S, Gujral T, Saksena S, Gill RK, Alrefai WA, Borthakur A, Dudeja PK (2016) Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am J Physiol Gastrointest Liver Physiol 311:G817–G826. https://doi.org/10.1152/ajpgi.00173.2016

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lam RS, App EM, Nahirney D, Szkotak AJ, Vieira-Coelho MA, King M, Duszyk M (2003) Regulation of Cl- secretion by alpha-adrenergic receptors in mouse colonic epithelium. J Physiol 548:475–484. https://doi.org/10.1113/jphysiol.2002.036806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lamprecht G, Baisch S, Schoenleber E, Gregor M (2005) Transport properties of the human intestinal anion exchanger DRA (Down-Regulated in Adenoma) in transfected HEK293 cells. Pflugers Arch 449:479–490. https://doi.org/10.1007/s00424-004-1342-x

    Article  CAS  PubMed  Google Scholar 

  57. Laubitz D, Larmonier CB, Bai A, Midura-Kiela MT, Lipko MA, Thurston RD, Kiela PR, Ghishan FK (2008) Colonic gene expression profile in NHE3-deficient mice: evidence for spontaneous distal colitis. Am J Physiol Gastrointest Liver Physiol 295:G63–G77. https://doi.org/10.1152/ajpgi.90207.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U, Kere J (2003) Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Phys Cell Phys 284:C769–C779. https://doi.org/10.1152/ajpcell.00270.2002

    Article  CAS  Google Scholar 

  59. Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE (1999) Mouse down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J Biol Chem 274:22855–22861. https://doi.org/10.1074/jbc.274.32.22855

    Article  CAS  PubMed  Google Scholar 

  60. Neumeier LI, Thomson RB, Reichel M, Eckardt KU, Aronson PS, Knauf F (2020) Enteric oxalate secretion mediated by Slc26a6 defends against hyperoxalemia in murine models of chronic kidney disease. J Am Soc Nephrol 31:1987–1995. https://doi.org/10.1681/asn.2020010105

    Article  CAS  PubMed  Google Scholar 

  61. Nozawa T, Sugiura S, Hashino Y, Tsuji A, Tamai I (2004) Role of anion exchange transporter PAT1 (SLC26A6) in intestinal absorption of organic anions. J Drug Target 12:97–104. https://doi.org/10.1080/10611860410001693742

    Article  CAS  PubMed  Google Scholar 

  62. Petrovic S, Wang ZH, Ma LY, Seidler U, Forte JG, Shull GE, Soleimani M (2002) Colocalization of the apical Cl-/HCO3- exchanger PAT1 and gastric H+-K+-ATPase in stomach parietal cells. Am J Physiol Gastrointest Liver Physiol 283:G1207–G1216. https://doi.org/10.1152/ajgpi.00137.2002

    Article  CAS  PubMed  Google Scholar 

  63. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A (2011) Hyperoxaluria: a gut-kidney axis? Kidney Int 80:1146–1158. https://doi.org/10.1038/ki.2011.287

    Article  CAS  PubMed  Google Scholar 

  64. Sakhaee K, Maalouf NM, Sinnott B (2012) Kidney Stones 2012: Pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97:1847–1860. https://doi.org/10.1210/jc.2011-3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang ZH, Soleimani M (2006) slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem 281:37962–37971. https://doi.org/10.1074/jbc.M607527200

    Article  CAS  PubMed  Google Scholar 

  66. Seidler U, Nikolovska K (2019) Slc26 family of anion transporters in the gastrointestinal tract: expression, function, regulation, and role in disease. Compr Physiol 9:839–872. https://doi.org/10.1002/cphy.c180027

    Article  PubMed  Google Scholar 

  67. Seidler U, Rottinghaus I, Hillesheim J, Chen M, Riederer B, Krabbenhoft A, Engelhardt R, Wiemann M, Wang Z, Barone S, Manns MP, Soleimani M (2008) Sodium and chloride absorptive defects in the small intestine in Slc26a6 null mice. Pflugers Arch 455:757–766. https://doi.org/10.1007/s00424-007-0318-z

    Article  CAS  PubMed  Google Scholar 

  68. Sellin JH, Thompson SM (1992) Electrogenic anion absorption in rabbit distal colon. Proc Soc Exp Biol Med 199:222–229

    Article  CAS  Google Scholar 

  69. Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL (2007) PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 292:G1079–G1088. https://doi.org/10.1152/ajpgi.00354.2006

    Article  CAS  PubMed  Google Scholar 

  70. Simpson JE, Walker NM, Supuran CT, Soleimani M, Clarke LL (2010) Putative anion transporter-1 (Pat-1, Slc26a6) contributes to intracellular pH regulation during H+-dipeptide transport in duodenal villous epithelium. Am J Physiol Gastrointest Liver Physiol 298:G683–G691. https://doi.org/10.1152/ajpgi.00293.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh AK, Sjoblom M, Zheng W, Krabbenhoft A, Riederer B, Rausch B, Manns MP, Soleimani M, Seidler U (2008) CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3- secretion. Acta Physiol 193:357–365. https://doi.org/10.1111/j.1748-1716.2008.01854.x

    Article  CAS  Google Scholar 

  72. Singh AK, Riederer B, Chen MM, Xiao F, Krabbenhoft A, Engelhardt R, Nylander O, Soleimani M, Seidler U (2010) The switch of intestinal Slc26 exchangers from anion absorptive to HCO3- secretory mode is dependent on CFTR anion channel function. Am J Phys Cell Phys 298:C1057–C1065. https://doi.org/10.1152/ajpcell.00454.2009

    Article  CAS  Google Scholar 

  73. Smith PL, Sullivan SK, McCabe RD (1986) Concentration-dependent effects of disulfonic stilbenes on colonic chloride transport. Am J Physiol Gastrointest Liver Physiol 250:G44–G49

    Article  CAS  Google Scholar 

  74. Stern JM, Urban-Maldonado M, Usyk M, Granja I, Schoenfeld D, Davies KP, Agalliu I, Asplin J, Burk R, Suadicani SO (2019) Fecal transplant modifies urine chemistry risk factors for urinary stone disease. Phys Rep 7. https://doi.org/10.14814/phy2.14012

  75. Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL (2011) SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am J Phys Cell Phys 301:C289–C303. https://doi.org/10.1152/ajpcell.00089.2011

    Article  CAS  Google Scholar 

  76. Stumpf A, Almaca J, Kunzelmann K, Wenners-Epping K, Huber SM, Haberle J, Falk S, Duebbers A, Walte M, Oberleithner H, Schillers H (2006) IADS, a decomposition product of DIDS activates a cation conductance in Xenopus oocytes and human erythrocytes: New compound for the diagnosis of cystic fibrosis. Cell Physiol Biochem 18:243–252. https://doi.org/10.1159/000097671

    Article  CAS  PubMed  Google Scholar 

  77. Talbot C, Lytle C (2010) Segregation of Na+/H+ exchanger-3 and Cl-/HCO3- exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol 299:G358–G367. https://doi.org/10.1152/ajpgi.00151.2010

    Article  CAS  PubMed  Google Scholar 

  78. Tyagi S, Kavilaveettil RJ, Alrefai WA, Alsafwah S, Ramaswamy K, Dudeja PK (2001) Evidence for the existence of a distinct SO42--OH- exchange mechanism in the human proximal colonic apical membrane vesicles and its possible role in chloride transport. Exp Biol Med 226:912–918

    Article  CAS  Google Scholar 

  79. Walker NM, Simpson JE, Yen PF, Gill RK, Rigsby EV, Brazill JM, Dudeja PK, Schweinfest CW, Clarke LL (2008) Down-regulated in adenoma Cl-/HCO3- exchanger couples with Na+/H+ exchanger 3 for NaCl absorption in murine small intestine. Gastroenterology 135:1645–1653. https://doi.org/10.1053/j.gastro.2008.07.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Walker NM, Simpson JE, Hoover EE, Brazill JM, Schweinfest CW, Soleimani M, Clarke LL (2011) Functional activity of Pat-1 (Slc26a6) Cl-/HCO3- exchange in the lower villus epithelium of murine duodenum. Acta Physiol 201:21–31. https://doi.org/10.1111/j.1748-1716.2010.02210.x

    Article  CAS  Google Scholar 

  81. Wang ZH, Petrovic S, Mann E, Soleimani M (2002) Identification of an apical Cl-/HCO3- exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282:G573–G579. https://doi.org/10.1152/ajpgi.00338.2001

    Article  CAS  PubMed  Google Scholar 

  82. Wang ZH, Wang T, Petrovic S, Tuo BG, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M (2005) Renal and intestinal transport defects in Slc26a6-null mice. Am J Phys Cell Phys 288:C957–C965. https://doi.org/10.1152/ajpcell.00505.2004

    Article  CAS  Google Scholar 

  83. Whittamore JM, Hatch M (2015) Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat. Urolithiasis 43:489–499. https://doi.org/10.1007/s00240-015-0801-5

    Article  CAS  PubMed  Google Scholar 

  84. Whittamore JM, Hatch M (2017) Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis. Am J Physiol Gastrointest Liver Physiol 313:G166–G179. https://doi.org/10.1152/ajpgi.00079.2017

    Article  PubMed  PubMed Central  Google Scholar 

  85. Whittamore JM, Hatch M (2017) The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45:89–108. https://doi.org/10.1007/s00240-016-0952-z

    Article  CAS  PubMed  Google Scholar 

  86. Whittamore JM, Hatch M (2019) Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid-base homeostasis. Urolithiasis 47:243–254. https://doi.org/10.1007/s00240-018-1067-5

    Article  CAS  PubMed  Google Scholar 

  87. Whittamore JM, Freel RW, Hatch M (2013) Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum. Am J Physiol Gastrointest Liver Physiol 305:G172–G184. https://doi.org/10.1152/ajpgi.00084.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Whittamore JM, Frost SC, Hatch M (2015) Effects of acid-base variables and the role of carbonic anhydrase on oxalate secretion by the mouse intestine in vitro. Phys Rep 3. https://doi.org/10.14814/phy2.12282

  89. Whittamore JM, Stephens CE, Hatch M (2019) Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol 316:G82–G94. https://doi.org/10.1152/ajpgi.00299.2018

    Article  CAS  PubMed  Google Scholar 

  90. Worcester EM (2002) Stones from bowel disease. Endocrinol Metab Clin N Am 31:979–999. https://doi.org/10.1016/s0889-8529(02)00035-x

    Article  CAS  Google Scholar 

  91. Xia WL, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song PH, Tian DA, Soleimani M, Seidler U (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch 466:1541–1556. https://doi.org/10.1007/s00424-013-1381-2

    Article  CAS  PubMed  Google Scholar 

  92. Yu Q, Liu XM, Liu YJ, Riederer B, Li TL, Tian DA, Tuo BG, Shull G, Seidler U (2016) Defective small intestinal anion secretion, dipeptide absorption, and intestinal failure in suckling NBCe1-deficient mice. Pflugers Arch 468:1419–1432. https://doi.org/10.1007/s00424-016-1836-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Carolyn Avila-Duran, Maureen Mohan, and Morgan Parker for animal husbandry.

Funding

This work was supported by National Institutes of Health grants DK-108755 and DK-088892 to M. Hatch. J. Whittamore was also supported by a research grant from the Oxalosis & Hyperoxaluria Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and M.H. conceived and designed the study; J.W. performed the research; J.W. and M.H. analyzed the data; J.W. wrote the paper.

Corresponding author

Correspondence to Jonathan M. Whittamore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All animal experimentation was approved by the University of Florida Institutional Animal Care and Use Committee (IACUC) and conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whittamore, J.M., Hatch, M. The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Arch - Eur J Physiol 473, 95–106 (2021). https://doi.org/10.1007/s00424-020-02495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02495-x

Keywords

Navigation