Skip to main content
Log in

Soft-switching buck inverter

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The soft-switching buck inverter, which is mainly applied to solve the contradictions between the switching frequency and the shoot-through problem along with the dead-time effect, is proposed in this paper. A detailed analysis of the relationship between the range of the duty ratio to realize soft-switching as well as the additional voltage stress and the current stress is conducted. In addition, a 1 kW prototype is designed and established. Results of simulations and experiments verify the validity of the theoretical analysis. Furthermore, the proposed soft-switching buck inverter has a strong practical significance in situations where medium and high power outputs are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Joy, M.C., Chaithanya, V., Jayanand, B.: Three-phase infinite level inverter based active power filter. In: IEEE International Conference on Power Electronics, Drives and Energy Systems, pp 1–6 (2016)

  2. Wang, Q. et al: Hybrid control strategy of grid-tied inverter for harmonic and reactive power compensation. In: IEEE Conference on Industrial Electronics and Applications, pp 249–253 (2018).

  3. Pahlevani, M., Eren, S., Guerrero, J.M., Jain, P.: A hybrid estimator for active/reactive power control of single-phase distributed generation systems with energy storage. IEEE Trans. Power Electron. 31, 2919–2936 (2016)

    Article  Google Scholar 

  4. Kim, Y., Fuentes, E., Norford, L.K.: Experimental study of grid frequency regulation ancillary service of a variable speed heat pump. IEEE Trans. Power Syst. 31, 3090–3099 (2016)

    Article  Google Scholar 

  5. Shuying, G., Minxiao, H., Ruoxi, L., Jun, W.: Harmonic influence of traction locomotive on hybrid DC asynchronous interconnection project. J. Eng. 2017, 911–916 (2017)

    Google Scholar 

  6. Xiao, H., Zhang, L., Wang, Z., Cheng, M.: A new soft-switching configuration and its application in transformerless photovoltaic grid-connected inverters. IEEE Trans. Ind. Elec. 65, 9518–9527 (2018)

    Article  Google Scholar 

  7. Chu, E., Zhang, X., Huang, L.: Research on a novel modulation strategy for double auxiliary resonant commutated pole soft-switching inverter with the shunt dead time. IEEE Trans. Power Electron. 31, 6855–6869 (2016)

    Article  Google Scholar 

  8. Moosavi, M., Toliyat, H.A.: A Multicell Cascaded high frequency Link Inverter with Soft-switching and Isolation. IEEE Trans. Ind. Electron. 66, 2518–2528 (2019)

    Article  Google Scholar 

  9. Cai, M., Wasynczukm, O., Saeedifard, M.: A voltage-edge-rate-limiting soft-switching inverter based on auxiliary resonant pole. IEEE J. Emerg. Sel. Top. Power Electron. 7, 736–744 (2019)

    Article  Google Scholar 

  10. Khodabandeh, M., Afshari, E., Amirabadi, M.: A single-stage soft-switching high frequency AC-link PV inverter: design, analysis, and evaluation of Si-based and SiC-based prototypes. IEEE Trans. Power Electron. 34, 2312–2326 (2019)

    Article  Google Scholar 

  11. Gekeler Manfred, W.: soft-switching three level inverter (S3L inverter). In: 15th European Conference on Power Electronics and Applications, Lille, France, pp 1–10 (2013)

  12. Tao, C., Wang, C., Chang, C.: A design of a DC–AC inverter using a modified ZVS-PWM auxiliary commutation pole and a DSP-based PID-like fuzzy control. IEEE Trans. Ind. Electron. 63, 397–405 (2016)

    Article  Google Scholar 

  13. He, N., Chen, M., Wu, J., Zhu, N., Xu, D.: 20-kW zero-voltage-switching SiC-mosfet grid inverter with 300 kHz switching frequency. IEEE Trans. Power Electron. 34, 5175–5190 (2019)

    Article  Google Scholar 

  14. Zhang, H., Yao, J., Kou, B.: Modulated initial resonant current control strategy for extra-LC auxiliary-resonant-snubber-based converter to improveoutput quality in high-precision applications. IEEE Trans. Ind. Electron. 7, 5039–5048 (2019)

    Article  Google Scholar 

  15. Qinghong, Y., Nelms, R.M.: A single-phase resonant snubber inverter with fixed timing control for a UPS. In: IEEE Power Electronics Specialists Conference, Acapulco, Mexico (2003)

  16. Cui, Y., et al.: High precision and large range timing jitter measurement and control of ultrashort laser pulses. IEEE Photon. Technol. Lett. 28, 2215–2217 (2016)

    Article  Google Scholar 

  17. Chen, J., Sha, D., Zhang, J., Liao, X.: An SiC MOSFET based three-phase ZVS inverter employing variable switching frequency space vector PWM control. IEEE Trans. Power Electron. 7, 6320–6331 (2019)

    Article  Google Scholar 

  18. Zhang, Q., Hu, H.-B., Zhang, D.-H., Fang, X., John-Shen, Z., Bartarseh, I.: A controlled-type ZVS technique without auxiliary components for the low power DC/AC inverter. IEEE Trans. Power Electron. 28(7), 3287–3285 (2013)

    Article  Google Scholar 

  19. Kou, B., Zhang, H., Jin, Y., Zhang, H.: An improved control scheme for single-phase auxiliary resonant snubber inverter. In: IEEE 8th International Power Electronics and Motion Control Conference, pp 1259–1263 (2016)

  20. Qiu, T., Wen, X., Zhao, F.: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans. Power Electron. 31, 2530–2538 (2016)

    Article  Google Scholar 

  21. Wang, X., Xiao, H., Wei, W., Chen, C.: An improved transformerless photovoltaic grid-connected soft-switching inverter. In: 2019 14th IEEE Conference on Industrial Electronics and Applications, pp 2338–2343 (2019)

  22. Xiao, H., Wang, Z., Cheng, M.: Soft-switching techniques for transformerless photovoltaic grid-connected inverters. In: 2018 IEEE Energy Conversion Congress and Exposition (2018)

  23. Yeh, C.-S., Chen, C.-W., Lee, M., Lai, J.-S.: A hybrid modulation method for single-stage soft-switching inverter based on series resonant converter. IEEE Trans. Power Electron. 35, 5785–5796 (2019)

    Article  Google Scholar 

  24. Soh, J.-H., Lim, J.-Y., Kimt, R.-Y.: An improved single-phase full-bridge ZVS inverter with a subtractive coupled magnetics. J. Electr. Eng. Technol. 12, 1835–1841 (2017)

    Google Scholar 

  25. Chen, Y., Hu, G., Du, C., Chen, M., Xu, D.: A soft-switching full-bridge inverter with high efficiency. In: 2013 IEEE Energy Conversion Congress and Exposition (2013)

  26. Huynh, P.S., Williamson, S.S.: A Soft-switched Active Clamped Half-bridge Current Source Inverter for Wireless Inductive Power Transfer. In: 2019 IEEE Energy Conversion Congress and Exposition (2019)

  27. Hong, F., Lei, H., Ji, B., Li, L., Wang, S.: Buck inverter without shoot through. IET Power Electron. 10, 1740–1750 (2017)

    Article  Google Scholar 

  28. Hong, F., Liu, J., Ji, B., Zhou, Y., Wang, J., Wang, C.: Single inductor dual buck full-bridge inverter. IEEE Trans. Ind. Electron. 62, 4869–4877 (2015)

    Article  Google Scholar 

  29. Liu, M., Hong, F.: FPGA controlled dual buck half bridge three-level inverter. In: Proceedings of 2012 9th International Bhurban Conference on Applied Sciences and Technology (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wu, X. & Hong, F. Soft-switching buck inverter. J. Power Electron. 21, 113–125 (2021). https://doi.org/10.1007/s43236-020-00175-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00175-8

Keywords

Navigation