Skip to main content

Advertisement

Log in

Characterization of the plasma proteomic profile of frailty phenotype

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty is a risk factor for poor health outcomes in older adults. The aim of this study was to identify plasma proteomic biomarkers of frailty in 752 men and women older than 65 years of age from the InCHIANTI study. One thousand three hundred one plasma proteins were measured using an aptamer-based assay. Associations of each protein with frailty status were assessed using logistic regression and four proteins creatine kinase M-type (CKM), B-type (CKB), C-X-C motif chemokine ligand 13 (CXCL13), and thrombospondin 2 (THBS2) were associated with frailty status. Two proteins, cyclin-dependent kinase 5 (CDK5/CDK5R1) and interleukin 1 alpha (IL1A), were associated with worsening of frailty status over time in volunteers free of frailty at baseline. Using partial least squares discriminant analysis (PLS-DA), data of 1301 proteins was able to discriminate between frail and non-frail with a 2% error rate. The proteins with greater discriminatory ability represented the inflammation, blood coagulation, and cell growth pathways. The utility of these proteins as biomarkers of frailty should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Access to proteomic data is available upon review and subsequent approval of proposals submitted through the InCHIANTI study website (inchiantistudy.net).

References

  1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/S0140-6736(12)62167-9.

    Article  PubMed  Google Scholar 

  2. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  3. Cesari M, Prince M, Thiyagarajan JA, De Carvalho IA, Bernabei R, Chan P, et al. Frailty: an emerging public health priority. J Am Med Dir Assoc. 2016;17(3):188–92. https://doi.org/10.1016/j.jamda.2015.12.016.

    Article  PubMed  Google Scholar 

  4. Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia. Front Physiol. 2017;8:1045. https://doi.org/10.3389/fphys.2017.01045.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soysal P, Stubbs B, Lucato P, Luchini C, Solmi M, Peluso R, et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev. 2016;31:1–8. https://doi.org/10.1016/j.arr.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  6. Lin CH, Liao CC, Huang CH, Tung YT, Chang HC, Hsu MC, et al. Proteomics analysis to identify and characterize the biomarkers and physical activities of non-frail and frail older adults. Int J Med Sci. 2017;14(3):231–9. https://doi.org/10.7150/ijms.17627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shamsi KS, Pierce A, Ashton AS, Halade DG, Richardson A, Espinoza SE. Proteomic screening of glycoproteins in human plasma for frailty biomarkers. J Gerontol A Biol Sci Med Sci. 2012;67(8):853–64. https://doi.org/10.1093/gerona/glr224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48(12):1618–25. https://doi.org/10.1111/j.1532-5415.2000.tb03873.x.

    Article  CAS  PubMed  Google Scholar 

  9. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5(12):e15004. https://doi.org/10.1371/journal.pone.0015004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17(5):e12799. https://doi.org/10.1111/acel.12799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Candia J, Cheung F, Kotliarov Y, Fantoni G, Sellers B, Griesman T, et al. Assessment of variability in the SOMAscan assay. Sci Rep. 2017;7(1):14248. https://doi.org/10.1038/s41598-017-14755-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheung F, Fantoni G, Conner M, Sellers BA, Kotliarov Y, Candia J, et al. Web tool for navigating and plotting SomaLogic ADAT files. J Open Res Softw. 2017;5:20. https://doi.org/10.5334/jors.166.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fava GA. Assessing depressive symptoms across cultures: Italian validation of the CES-D self-rating scale. J Clin Psychol. 1983;39(2):249–51. https://doi.org/10.1002/1097-4679(198303)39:2<249::aid-jclp2270390218>3.0.co;2-y.

    Article  CAS  PubMed  Google Scholar 

  14. Akki A, Yang H, Gupta A, Chacko VP, Yano T, Leppo MK, et al. Skeletal muscle ATP kinetics are impaired in frail mice. Age (Dordr). 2014;36(1):21–30. https://doi.org/10.1007/s11357-013-9540-0.

    Article  CAS  Google Scholar 

  15. Walston J, Fedarko N, Yang H, Leng S, Beamer B, Espinoza S, et al. The physical and biological characterization of a frail mouse model. J Gerontol A Biol Sci Med Sci. 2008;63(4):391–8. https://doi.org/10.1093/gerona/63.4.391.

    Article  PubMed  Google Scholar 

  16. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363–13. https://doi.org/10.1155/2012/960363.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kurita N, Kamitani T, Wada O, Shintani A, Mizuno K. Disentangling associations between serum muscle biomarkers and sarcopenia in the presence of pain and inflammation among patients with osteoarthritis: the SPSS-OK Study. J Clin Rheumatol. 2019. https://doi.org/10.1097/RHU.0000000000001156.

  18. Bornstein P, Sage EH. Thrombospondins. Methods Enzymol. 1994;245:62–85. https://doi.org/10.1016/0076-6879(94)45006-4.

    Article  CAS  PubMed  Google Scholar 

  19. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2(5):a006627. https://doi.org/10.1101/cshperspect.a006627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park YW, Kang YM, Butterfield J, Detmar M, Goronzy JJ, Weyand CM. Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol. 2004;165(6):2087–98. https://doi.org/10.1016/S0002-9440(10)63259-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimura Y, Izumiya Y, Hanatani S, Yamamoto E, Kusaka H, Tokitsu T, et al. High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessel. 2016;31(1):52–9. https://doi.org/10.1007/s00380-014-0571-y.

    Article  Google Scholar 

  22. Dobner T, Wolf I, Emrich T, Lipp M. Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt’s lymphoma. Eur J Immunol. 1992;22(11):2795–9. https://doi.org/10.1002/eji.1830221107.

    Article  CAS  PubMed  Google Scholar 

  23. Kazanietz MG, Durando M, Cooke M. CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond. Front Endocrinol (Lausanne). 2019;10:471. https://doi.org/10.3389/fendo.2019.00471.

    Article  Google Scholar 

  24. Malik A, Kanneganti TD. Function and regulation of IL-1alpha in inflammatory diseases and cancer. Immunol Rev. 2018;281(1):124–37. https://doi.org/10.1111/imr.12615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994;371(6496):419–23. https://doi.org/10.1038/371419a0.

    Article  CAS  PubMed  Google Scholar 

  26. Mishiba T, Tanaka M, Mita N, He X, Sasamoto K, Itohara S, et al. Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain. 2014;7:82. https://doi.org/10.1186/s13041-014-0082-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature. 2001;410(6826):376–80. https://doi.org/10.1038/35066591.

    Article  CAS  PubMed  Google Scholar 

  28. Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease. Curr Alzheimer Res. 2019;16(13):1206–15. https://doi.org/10.2174/1567205016666191210094435.

    Article  CAS  PubMed  Google Scholar 

  29. Shah K, Lahiri DK. Cdk5 activity in the brain—multiple paths of regulation. J Cell Sci. 2014;127(Pt 11):2391–400. https://doi.org/10.1242/jcs.147553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buchman AS, Yu L, Wilson RS, Schneider JA, Bennett DA. Association of brain pathology with the progression of frailty in older adults. Neurology. 2013;80(22):2055–61. https://doi.org/10.1212/WNL.0b013e318294b462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ottenbacher KJ, Graham JE, Al Snih S, Raji M, Samper-Ternent R, Ostir GV, et al. Mexican Americans and frailty: findings from the Hispanic established populations epidemiologic studies of the elderly. Am J Public Health. 2009;99(4):673–9. https://doi.org/10.2105/AJPH.2008.143958.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raji MA, Al Snih S, Ostir GV, Markides KS, Ottenbacher KJ. Cognitive status and future risk of frailty in older Mexican Americans. J Gerontol A Biol Sci Med Sci. 2010;65(11):1228–34. https://doi.org/10.1093/gerona/glq121.

    Article  PubMed  Google Scholar 

  33. Panza F, Lozupone M, Solfrizzi V, Sardone R, Dibello V, Di Lena L, et al. Different cognitive frailty models and health- and cognitive-related outcomes in older age: from epidemiology to prevention. J Alzheimers Dis. 2018;62(3):993–1012. https://doi.org/10.3233/JAD-170963.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kanapuru B, Ershler WB. Inflammation, coagulation, and the pathway to frailty. Am J Med. 2009;122(7):605–13. https://doi.org/10.1016/j.amjmed.2009.01.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tracy RP, Bovill EG, Fried LP, Heiss G, Lee MH, Polak JF, et al. The distribution of coagulation factors VII and VIII and fibrinogen in adults over 65 years. Results from the Cardiovascular Health Study. Ann Epidemiol. 1992;2(4):509–19. https://doi.org/10.1016/1047-2797(92)90100-5.

    Article  CAS  PubMed  Google Scholar 

  36. Nuesch E, Dale CE, Amuzu A, Kuper H, Bowling A, Ploubidis GB, et al. Inflammation, coagulation and risk of locomotor disability in elderly women: findings from the British Women’s Heart and Health Study. Eur J Epidemiol. 2012;27(8):633–45. https://doi.org/10.1007/s10654-012-9706-6.

    Article  PubMed  Google Scholar 

  37. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–22. https://doi.org/10.1038/s41569-018-0064-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sathyan S, Ayers E, Gao T, Milman S, Barzilai N, Verghese J. Plasma proteomic profile of frailty. Aging Cell. 2020;19:e13193. https://doi.org/10.1111/acel.13193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–95. https://doi.org/10.1503/cmaj.050051.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cesari M, Gambassi G, van Kan GA, Vellas B. The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing. 2014;43(1):10–2. https://doi.org/10.1093/ageing/aft160.

    Article  PubMed  Google Scholar 

Download references

Funding

“The InCHIANTI study baseline” (1998–2000) was supported as a “targeted project” (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336); the InCHIANTI Follow-up 1 (2001–2003) was funded by the U.S. National Institute on Aging (Contracts: N.1-AG-1-1 and N.1-AG-1-2111); the InCHIANTI Follow-ups 2 and 3 studies (2004–2010) were financed by the U.S. National Institute on Aging (Contract: N01-AG-5-0002);supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiko Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 253 kb)

ESM 2

(XLSX 425 kb)

ESM 3

(XLSX 107 kb)

ESM 4

(XLSX 10 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landino, K., Tanaka, T., Fantoni, G. et al. Characterization of the plasma proteomic profile of frailty phenotype. GeroScience 43, 1029–1037 (2021). https://doi.org/10.1007/s11357-020-00288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00288-9

Keywords

Navigation