Skip to main content
Log in

Investigation of Recombination Parameters of Nonequilibrium Charge Carriers in Si Technological Plates by Thermal Imaging Method

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The research approach on the investigation of recombination parameters of nonequilibrium charge carriers in Si technological plates by thermal imaging method is offered in this paper. The lifetime, diffusion length and surface recombination velocity of charge carriers are taken into account. The method is based on a study of the spatial distribution of Si samples thermal radiation beyond the self-absorption edge in the spectral range of 3–5 μm using by an IR camera. There are experimental results of silicon technological samples researches: distribution of the excess charge carriers concentration in silicon samples (n-Si, ρ = 500 Ω⋅cm, d = 8 mm) and the diffusion distribution of charge carriers at T = 150 °C. Temperature dependence of the diffusion length and volumetric lifetime in silicon samples is measured by three different methods: using an IR camera, by the kinetics of thermal radiation decline beyond the self-absorption edge during laser excitation, and by the method of photoconductivity attenuation. This approach is implemented in the process of input control of silicon plates used for solar panels manufacture at JSC “Quasar.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. I. Staroselskiy, Physics of semiconductor microelectronic devices (Yurayt, Moscow, 2019).

    Google Scholar 

  2. L. А. Skvortsov, Fundamentals of photometric radiometry and laser thermography (Technosphere, Moscow, 2017).

    Google Scholar 

  3. Y. Zeng, H. Tong, C. Quan, L. Cai, Z. Yang, K. Chen, Z. Yuan, C.-H. Wu, B. Yan, P. Gao, J. Ye, "Theoretical exploration towards high-efficiency tunnel oxide passivated carrier-selective contacts (TOPCon) solar cells," Sol. Energy, v.155, p.654 (2017). DOI: https://doi.org/10.1016/j.solener.2017.07.014.

    Article  Google Scholar 

  4. V. D. Akhmetov, N. V. Fateev, "Infrared tomography of the charge-carrier lifetime and diffusion length in semiconductor-grade silicon ingots," Semiconductors, v.35, n.1, p.40 (2001). DOI: https://doi.org/10.1134/1.1340287.

    Article  Google Scholar 

  5. V. Malyutenko, S. Chyrchyk, "Surface recombination velocity in Si wafers by photoinduced thermal emission," Appl. Phys. Lett., v.89, n.5, p.051909 (2006). DOI: https://doi.org/10.1063/1.2236467.

    Article  Google Scholar 

  6. S. V. Chyrchyk, "Express method of finding recombination parameters in technological silicon plates," Radioelectron. Commun. Syst., v.55, n.3, p.136 (2012). DOI: https://doi.org/10.3103/S0735272712030053.

    Article  Google Scholar 

  7. G. G. Macfarlane, T. P. McLean, J. E. Quarrington, V. Roberts, "Fine Structure in the Absorption-Edge Spectrum of Si," Phys. Rev., v.111, n.5, p.1245 (1958). DOI: https://doi.org/10.1103/PhysRev.111.1245.

    Article  Google Scholar 

  8. K. Rajkanan, R. Singh, J. Shewchun, "Absorption coefficient of silicon for solar cell calculations," Solid-State Electron., v.22, n.9, p.793 (1979). DOI: https://doi.org/10.1016/0038-1101(79)90128-X.

    Article  Google Scholar 

  9. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, "An efficient room-temperature silicon-based light-emitting diode," Nature, v.410, n.6825, p.192 (2001). DOI: https://doi.org/10.1038/35065571.

    Article  Google Scholar 

  10. H. R. Philipp, E. A. Taft, "Optical Constants of Silicon in the Region 1 to 10 ev," Phys. Rev., v.120, n.1, p.37 (1960). DOI: https://doi.org/10.1103/PhysRev.120.37.

    Article  Google Scholar 

  11. F. López, E. Bernabéu, "Refractive index of vacuum-evaporated SiO thin films: Dependence on substrate temperature," Thin Solid Film., v.191, n.1, p.13 (1990). DOI: https://doi.org/10.1016/0040-6090(90)90269-J.

    Article  Google Scholar 

  12. V. K. Malyutenko, "Si photonics expands to mid-wave and long-wave infrared: the fundamentals and applications," in Silicon Photonics XI (SPIE, 2016). DOI: https://doi.org/10.1117/12.2208125.

    Chapter  Google Scholar 

  13. D. L. Stierwalt, R. F. Potter, "Infra-red spectral emittance of Si, Ge and CdS," in Proc. Int. Conf. Phys. Semicond. (London, 1962).

    Google Scholar 

  14. S. S. Bolgov, V. I. Pipa, О. Y. Salyuk, А. S. Arutyunov, "On question of modulation of semiconductors thermal radiation," Ukr. J. Phys., v.38, n.1, p.19 (1993).

    Google Scholar 

  15. R. Brendel, M. Bail, B. Bodmann, J. Kentsch, M. Schulz, "Analysis of photoexcited charge carrier density profiles in Si wafers by using an infrared camera," Appl. Phys. Lett., v.80, n.3, p.437 (2002). DOI: https://doi.org/10.1063/1.1434308.

    Article  Google Scholar 

  16. M. Schubert, J. Isenberg, S. Rein, W. Warta, "Temperature dependent carrier lifetime images," in Proc. of 19th European Photovoltaic Solar Energy Conference (Paris, 2004). URI: https://www.researchgate.net/publication/233944020_Temperature_dependent_carrier_lifetime_images.

    Google Scholar 

  17. S. М. Fainshtein, Surface treatment of semiconductor devices (Energia, Moscow, 1966).

    Google Scholar 

  18. P. V. Bulaev, V. A. Kapitonov, A. V. Lutetskii, A. A. Marmalyuk, D. B. Nikitin, D. N. Nikolaev, A. A. Padalitsa, N. A. Pikhtin, A. D. Bondarev, I. D. Zalevskii, I. S. Tarasov, "MOCVD-grown InGaAs/GaAs/AlGaAs laser structures with a broad-area contact," Semiconductors, v.36, n.9, p.1065 (2002). DOI: https://doi.org/10.1134/1.1507292.

    Article  Google Scholar 

  19. V. K. Malyutenko, G. I. Teslenko, "Determination of minority carrier lifetime by thermal emission method," Electron Technol., v.24, n.3–4, p.97 (1991).

    Google Scholar 

  20. L. P. Pavlov, Methods for measuring parameters of semiconductor materials (Vyssh. Shkola, Moscow, 1987).

    Google Scholar 

  21. C. Jacoboni, C. Canali, G. Ottaviani, A. Alberigi Quaranta, "A review of some charge transport properties of silicon," Solid-State Electron., v.20, n.2, p.77 (1977). DOI: https://doi.org/10.1016/0038-1101(77)90054-5.

    Article  Google Scholar 

  22. А. I. Anselm, Introduction to Semiconductor Theory: A Study Guide (Lan, St. Petersburg, 2017).

    Google Scholar 

Download references

Acknowledgments

The author thanks the staff of V.E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine for cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chyrchyk.

Ethics declarations

ADDITIONAL INFORMATION

S. V. Chyrchyk

The author declares that he has no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020090034 with DOI: https://doi.org/10.20535/S0021347020090034

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chyrchyk, S.V. Investigation of Recombination Parameters of Nonequilibrium Charge Carriers in Si Technological Plates by Thermal Imaging Method. Radioelectron.Commun.Syst. 63, 488–496 (2020). https://doi.org/10.3103/S0735272720090034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720090034

Navigation