Skip to main content
Log in

Macroporous Magnetic Iron Oxides and Their Composites for Liquid-Phase Catalytic Oxidation

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel synthetic approach is proposed to the production of macroporous magnetic iron oxides and their iron aluminate composites for liquid-phase catalytic oxidation. The materials were prepared by sol–gel synthesis where metal precursors were mixed with a colloidal template solution based on siloxane–acrylate latex. The pore structure and magnetic properties of the composites were studied as functions of temperature and magnetic field. The effects of the heat treatment schedule on the phase composition, porosity, and catalytic properties of the materials were elucidated. The results are supported by scanning electron microscopy, X-ray powder diffraction analysis, nuclear gamma resonance, and low-temperature nitrogen adsorption. The addition of aluminum ions in the course of sol–gel (template) synthesis allows the materials to preserve their pore structure upon high-temperature treatment, thereby improving the catalytic properties and significantly affecting the magnetic characteristics of the resulting magnetic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. U. T. D. Thuy, N. Q. Liem, C. M. A. Parlett, et al., Catal. Commun. 44, 62 (2014). https://doi.org/10.1016/j.catcom.2013.07.030

    Article  CAS  Google Scholar 

  2. M. Saranya, R. Ramachandran, E. J. J. Samuel, et al., Powder Technol. 279, 209 (2015). https://doi.org/10.1016/j.powtec.2015.03.041

    Article  CAS  Google Scholar 

  3. V. A. Avramenko, A. V. Voit, E. E. Dmitrieva, et al., Dokl. Chem. 418, 19 (2008). https://doi.org/10.1134/S0012500808010072

    Article  CAS  Google Scholar 

  4. E. K. Papynov, M. S. Palamarchuk, V. Y. Mayorov, et al., Solid State Sci. 69, 31 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.05.005

    Article  CAS  Google Scholar 

  5. E. K. Papynov, V. Y. Mayorov, M. S. Palamarchuk, et al., Mater. Charact. 88, 42 (2014). https://doi.org/10.1016/j.matchar.2013.12.003

    Article  CAS  Google Scholar 

  6. R. D. Ambashta and M. Sillanpaa, J. Hazard. Mater 180, 38 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.105

    Article  CAS  PubMed  Google Scholar 

  7. C. Santhosh, A. Malathi, E. Dhaneshvar, et al., Iron Oxide Nanomaterials for Water Purification (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-813926-4.00022-7

  8. M. Guglielmi, G. Kickelbick, and A. Martucci, Sol–Gel Nanocomposites (Springer, New York, 2014). https://doi.org/10.1007/978-1-4939-1209-4

  9. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  10. E. K. Papynov, A. N. Drankov, I. A. Tkachenko, et al., Russ. J. Inorg. Chem. 65, 820 (2020). https://doi.org/10.1134/S0036023620060157

    Article  CAS  Google Scholar 

  11. W. Wang, Y. Pang, and S. N. B. Hodgson, Micropor. Mesopor. Mater. 121, 121 (2009). https://doi.org/10.1016/j.micromeso.2009.01.014

    Article  CAS  Google Scholar 

  12. D. Zhao, Q. Huo, J. Feng, et al., J. Am. Chem. Soc. 120, 6024 (1998). https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  13. S. Partap, A. K. Hebb, Rehman I. Ur, et al., Polym. Bull. 58, 849 (2007). https://doi.org/10.1007/s00289-006-0724-y

    Article  CAS  Google Scholar 

  14. R. Gabbasov, M. Polikarpov, V. Cherepanov, et al., J. Magn. Magn. Mater. 380, 111 (2015). https://doi.org/10.1016/j.jmmm.2014.11.032

    Article  CAS  Google Scholar 

  15. H. J. H. Fenton, J. Chem. Soc. Trans. 65, 899 (1894).

    Article  CAS  Google Scholar 

  16. A. C. Turnock and H. P. Eugster, J. Petrol. 3, 533 (1962). https://doi.org/10.1093/petrology/3.3.533

    Article  CAS  Google Scholar 

  17. L. Néel, Ann. Phys. 12 (3), 137 (1948).

    Article  Google Scholar 

  18. V. N. Nikiforov, A. N. Ignatenko, and V. Yu. Irkhin, Zh. Eksp. Teor. Fiz. 151, 356 (2017).

    Article  Google Scholar 

  19. F. J. Morin, Phys. Rev. 78, 819 (1950). https://doi.org/10.1103/PhysRev.78.819.2

    Article  CAS  Google Scholar 

  20. N. Amin and S. Arajs, Phys. Rev. B 35, 4810 (1987). https://doi.org/10.1103/PhysRevB.35.4810

    Article  CAS  Google Scholar 

  21. D. Kubániová, L. Kubíčkova, T. Kmjec, et al., J. Magn. Magn. Mater. 475, 611 (2019). https://doi.org/10.1016/j.jmmm.2018.11.126

    Article  CAS  Google Scholar 

  22. D. J. Dunlop, Phys. Earth Planet. Int. 26, 1 (1981). https://doi.org/10.1016/0031-9201(81)90093-5

    Article  CAS  Google Scholar 

  23. B. Vallina, J. D. Rodriguez-Blanco, A. P. Brown, et al., J. Nanoparticle Res. 16, 2322 (2014). https://doi.org/10.1007/s11051-014-2322-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Kuchma (FEFU, Vladivostok) and employees of the Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences (Vladivostok) for interpritaion of the research results. The facilities of the Interdisciplinary Shared Facilities Center for Nanotechnologies and Advanced Functional Materials (Far East Federal University, Vladivostok, Russia) were used in the work and were financially supported by the FEFU Competitiveness Enhancement Program.

Funding

This study was fulfilled in the frame of the assignment of the Ministry of Science and Higher Education of the Russian Federation (theme No. 00657-2020-0006).

The experimental work on magnetic measurements of the developed materials and their analysis was supported by the Russian Science Foundation (project No. 19-72-20071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Papynov.

Ethics declarations

The authors have no conflicts of interests to declare.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papynov, E.K., Nomerovskii, A.D., Azon, A.S. et al. Macroporous Magnetic Iron Oxides and Their Composites for Liquid-Phase Catalytic Oxidation. Russ. J. Inorg. Chem. 65, 1642–1653 (2020). https://doi.org/10.1134/S0036023620110157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110157

Keywords:

Navigation