Skip to main content
Log in

Synthesis, Crystal Structure of Zinc(II)–Cysteamine Complex and Improvement of Cysteamine Stability

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The principal objective of this study is to evaluate the protective effect of cysteamine (Cym) against oxidation by chelating with metal cations. Cym–Zn complex has been prepared through a simple procedure using Cym ⋅ HCl and ZnSO4. The results have shown that the chelating efficiency of zinc is better when the molar ratio of the reactant Cym · HCl to zinc ions is 1.4–1.5. IR spectra of as-synthesized Cym–Zn complex suggests Cym cross-links with Zn through N and S atoms. X-ray powder diffraction analysis shows that the crystal structure is consisted of a coordination unit [Zn2(SC2H6N)3], a chlorine atom and an H2O molecule. Besides, the cell parameters of the monoclinic crystal are a = 7.9581(5) Å, b = 15.0794(10) Å, c = 12.2910(8) Å and β = 103°. Cym retention rate and thermal decomposition characteristics of Cym–Zn complex are significantly improved, and doping of iron, copper and manganese cations is helpful to suppress Cym oxidization because of the formation of stronger bonds with sulfur atom than zinc cation. The investigation indicates metal ion is an effective inhibitor for Cym oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. W. A. Gahl, E. M. Kuehl, F. Iwata, et al., Mol. Genet. Metab. 71, 100 (2000). https://doi.org/10.1006/mgme.2000.3062

    Article  CAS  PubMed  Google Scholar 

  2. F. Iwata, E. M. Kuehl, G. F. Reed, et al., Mol. Genet. Metab. 64, 237 (1998). https://doi.org/10.1006/mgme.1998.2725

    Article  CAS  PubMed  Google Scholar 

  3. Z. P. Liu, L. Xiong, G. Q. Ouyang, et al., Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-09375-y

    Article  CAS  Google Scholar 

  4. S. Pescina, F. Carra, C. Padula, et al., Eur. J. Pharm. Biopharm. 107, 171 (2016). https://doi.org/10.1016/j.ejpb.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  5. M. Santaniello, L. Critelli, G. Quattrociocchi, et al., J. Drug Delivery Sci. Tec. 21, 273 (2011). https://doi.org/10.1016/s1773-2247(11)50037-1

    Article  CAS  Google Scholar 

  6. S. Ghasemi, A. H. Khoshgoftarmanesh, M. Afyuni, et al., Soil Biol. Biochem. 63, 73 (2013). https://doi.org/10.1016/j.soilbio.2013.03.025

    Article  CAS  Google Scholar 

  7. M. Akhtar, A. I. Alharthi, M. A. Alotaibi, et al., Polyhedron 122, 105 (2017). https://doi.org/10.1016/j.poly.2016.11.017

    Article  CAS  Google Scholar 

  8. H. Fleischer, S. Hardt, and D. Schollmeyer, Inorg. Chem. 45, 8318 (2006). https://doi.org/10.1021/ic0604765

    Article  CAS  PubMed  Google Scholar 

  9. H. Fleischer, Y. Dienes, B. Mathiasch, et al., Inorg. Chem. 44, 8087 (2005). https://doi.org/10.1021/ic050814m

    Article  CAS  PubMed  Google Scholar 

  10. T. Watanabe, V. Kiron, and S. Satoh, Aquaculture 151, 185 (1997). https://doi.org/10.1016/S0044-8486(96)01503-7

    Article  CAS  Google Scholar 

  11. E. S. Carlson, I. Tkac, R. Magid, et al., J. Nutr. 139, 672 (2009). https://doi.org/10.3945/jn.108.096354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Kundan, G. D. Bajju, D. Gupta, and T. K. Roy, Russ. J. Inorg. Chem. 64, 1379 (2019). https://doi.org/10.1134/s003602361911010x

    Article  CAS  Google Scholar 

  13. A. W. Nugraha, D. Onggo, and M. A. Martoprawiro, Russ. J. Inorg. Chem. 64, 755 (2019). https://doi.org/10.1134/S0036023619060123

    Article  CAS  Google Scholar 

  14. L. Wang, J. Hao, Y. J. Dong, and W. K. Dong, J. Struct. Chem. 59, 928 (2018). https://doi.org/10.1134/s0022476618040261

    Article  CAS  Google Scholar 

  15. A. C. Sajikumar, S. Vinu, and C. Krishnan, J. Therm. Anal. Calorim. 119, 1047 (2014). https://doi.org/10.1007/s10973-014-4237-x

    Article  CAS  Google Scholar 

  16. X. W. Feng, V. V. Kulish, P. Wu, et al., Nano Res. 9, 2687 (2016). https://doi.org/10.1007/s12274-016-1156-0

    Article  CAS  Google Scholar 

  17. H. M. Zhang, G. S. Chen, M. J. Yi, and X. H. Lu, Amino Acids Biotic Resour. 24, 37 (2002) [in China]. https://doi.org/10.14188/j.ajsh.2002.02.012

  18. X. J. Yang, and Y. D. Ni, Chin. Nat. Standard: GB/T 24832-2009 (2009) [in China].

  19. Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi, J. Phys. Chem. A 103, 1401 (1999). https://doi.org/10.1021/jp983799y

    Article  CAS  Google Scholar 

  20. H. Y. Lee, J. S. Kim, and S. J. L. Kang, Interface Sci. 8, 223 (2000). https://doi.org/10.1023/a:1008768320484

    Article  CAS  Google Scholar 

  21. M. Akhtar, M. N. Tahir, M. Saleem, et al., Russ. J. Inorg. Chem. 60, 1568 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank to the school-enterprise joint project (no. 900214417) for the financial support of this work and Hunan University for all experimental tests in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufang Li.

Ethics declarations

The authors declare that there is no conflict of interest in submitting this manuscript.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan Hu, Fang, J., Zhang, X. et al. Synthesis, Crystal Structure of Zinc(II)–Cysteamine Complex and Improvement of Cysteamine Stability. Russ. J. Inorg. Chem. 65, 1718–1725 (2020). https://doi.org/10.1134/S0036023620110054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110054

Keywords:

Navigation