Skip to main content
Log in

Chemical Vapor Deposition of an Iridium Phase on Hafnium Carbide and Tantalum Carbide

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline iridium coatings on hafnium carbide and tantalum carbide substrates are prepared by chemical vapor deposition (MOCVD) at 600°С. Subsequent high-temperature treatment at 1100°С gives rise to chemical reactions between iridium and hafnium carbide or tantalum carbide to yield nanosized substitutional intermetallic solid solutions MIr3 – x and evolve free carbon. The occurrence of intermetallic interaction is proved by X-ray photoelectron (XPS) spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. P. Simonenko, N. P. Simonenko, A. S. Lysenko, et al., Zh. Neorg. Khim. 65, 420 (2020). https://doi.org/10.31857/S0044457X20030149

    Article  Google Scholar 

  2. E. P. Simonenko, N. P. Simonenko, M. I. Petrichko, et al., Zh. Neorg. Khim. 64, 1127 (2019). https://doi.org/10.1134/S0044457X19110199

    Google Scholar 

  3. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). https://doi.org/10.1134/S003602361610017X.

    Article  CAS  Google Scholar 

  4. C. Musa, R. Licheri, R. Orru, et al., Sol. En. 169, 111 (2018). https://doi.org/10.1016/j.solener.2018.04.036

    Article  CAS  Google Scholar 

  5. E. Sani, L. Mercatelli, D. Fontani, et al., J. Renewable Sustainable En. 3, 063 107 (2011). https://doi.org/10.1063/1.3662099

    Article  CAS  Google Scholar 

  6. W. A. Mackie, J. M. Lovell, and G. G. Magera, IVESC 2012 (IEEE, Monterey, CA, 2012), p. 129. https://doi.org/10.1109/IVESC.P.2012.6264168

  7. W. S. Hwang, D. Chan, and B. J. Cho, IEEE Trans. Electron Dev. 55, 2469 (2008). https://doi.org/10.1109/TED.2008.927946

    Article  CAS  Google Scholar 

  8. Kh. S. Kan and B. S. Kul’varskaya, Zh. Tekh. Fiz. 43, 1269 (1973).

    CAS  Google Scholar 

  9. V. V. Lozanov, N. I. Baklanova, N. V. Bulina, et al., ACS Appl. Mater. Interfaces 10, 13 062 (2018). https://doi.org/10.1021/acsami.8b01418

  10. N. I. Baklanova, V. V. Lozanov, and A. T. Titov, Corros. Sci. 143, 337 (2018). https://doi.org/10.1016/j.corsci.2018.08.044

    Article  CAS  Google Scholar 

  11. V. Yu. Vasilyev, N. B. Morozova, T. V. Basova, et al., RSC Adv. 5, 32 034 (2015). https://doi.org/10.1039/C5RA03566J

    Article  CAS  Google Scholar 

  12. C. K. Jun and P. T. B. Shaffer, J. Less-Common Met. 24 (3), 323 (1971). https://doi.org/10.1016/0022-5088(71)90113-5

    Article  CAS  Google Scholar 

  13. J. J. Halvorson and R. T. Wimber, J. Appl. Phys. 43, 2519 (1972). https://doi.org/10.1063/1.1661553

    Article  CAS  Google Scholar 

  14. R. T. K. Baker and R. D. Sherwood, J. Catal. 61, 378 (1980). https://doi.org/10.1016/0021-9517(80)90385-1

    Article  CAS  Google Scholar 

  15. R. F. Fisher, M. D. Alvey, and P. M. George, J. Vac. Sci. Technol. A 10, 2253 (1992). https://doi.org/10.1116/1.577927

    Article  CAS  Google Scholar 

  16. H. Wang and E. A. Carter, J. Am. Chem. Soc. 115, 2357 (1993). https://doi.org/10.1021/ja00059a034

    Article  CAS  Google Scholar 

  17. C. D. Wagner, The NIST X-ray Photoelectron Spectroscopy (XPS) Database (Natl. Inst. Stand. Technol., Oakland, 1991). https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1289.pdf.

  18. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST Standard Reference Database, Version 4.1 (2012). https://doi.org/10.18434/T4T88K

  19. J.-Ch. Dupin, D. Gonbeau, P. Vinatier, et al., Phys. Chem. Chem. Phys. 2, 1319 (2000). https://doi.org/10.1039/A908800H

    Article  CAS  Google Scholar 

  20. F. Huang, Z. Wan, Y. Jin, et al., J. Electrochem. Soc. B 164, 632 (2017). https://doi.org/10.1149/2.0641713jes

    Article  CAS  Google Scholar 

  21. I. Bertóti, M. Mohai, A. Csanády, et al., Surf. Interface Anal. 19, 457 (1992). https://doi.org/10.1002/sia.740190186

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Ukhina, PhD for measuring X-ray diffraction patterns, to A.V. Utkin, PhD for his help in preparing carbide pellets, and to the Shared Facilities Center of the Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, for providing facilities for recording and processing XPS spectra.

Funding

The study was supported by the Russian Science Foundation (project no. 18-19-00075)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lozanov.

Ethics declarations

The authors have no conflicts of interests to declare.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozanov, V.V., Il’in, I.Y., Morozova, N.B. et al. Chemical Vapor Deposition of an Iridium Phase on Hafnium Carbide and Tantalum Carbide. Russ. J. Inorg. Chem. 65, 1781–1788 (2020). https://doi.org/10.1134/S0036023620110108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110108

Keywords:

Navigation