Skip to main content
Log in

Preparation of Single Crystal of Inosine Induced by Sulfosalicylic Acid

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

For improving solubility of inosine, its β-form has been designed and prepared from inosine powder upon induction by sulfosalicylic acid. A single crystal of β-form inosine has been grown. The structure of β-form inosine has been characterized by XRPD, NMR and single-crystal X-ray crystallography. The crystal structure of β-form inosine demonstrates the layered structure based on a primary asymmetric cyclic hydrogen-bonded tetramer R44(14) based on the hetero-nitrogen and the hydroxyl group of inosine molecules. The single crystal exhibits the spiral structure along b axis formed due to O–H···O and O–H···N hydrogen bonds. As a result, water solubility under 37°C of inosine β-form is higher than that of inosine powder, and β-form inosine is hygroscopically more stable at 98% RH with respect to inosine powder. The β-form of inosine demonstrates the improved in vitro activity against liver cancer cells compared to inosine powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Haskó, G., Sitkovsky, M.V., and Szabo, C., Trends Pharmacol. Sci., 2004, vol. 25, p. 152. https://doi.org/10.1016/j.tips.2004.01.006

  2. Jurkowitz, M.S., Litsky, M.L., Browning, M.J., and Hohl, C.M., J. Neurochem. 1998, vol. 71, p. 535. https://doi.org/10.1046/j.1471-4159.1998.71020535.x

  3. Benowitz, L.I., Goldberg, D.E., Madsen, J.R., and Soni, D., Proceedings of the National Academy of Sciences, 1999, vols. 96, p. 13486. https://doi.org/10.1073/pnas.96.23.13486

  4. Ichikawa, S., and Ichikawa, A.M., Expert Opin. Ther. Pat. 2007, vol. 17, p. 485. https://doi.org/10.1517/13543776.17.5.487

  5. Deng, N.-N., Yelleswarapu, M., and Huck, W.T.S., Am. Chem. Soc. 2016, vol. 138, p. 7584. https://doi.org/10.1021/jacs.6b02107

  6. Miyata, K., Christie, R.J., and Kataoka, K., React. Funct. Polym., 2011, vol. 71, p. 227. https://doi.org/10.1016/j.reactfunctpolym.2010.10.009

    Article  CAS  Google Scholar 

  7. Cuiné, J.F., Charman, W.N., Pouton, C.W., Edwards, G.A., and Porter, C.J.H., Pharm. Res., 2007, vol. 24, p. 748. https://doi.org/10.1007/s11095-006-9194-z

    Article  CAS  PubMed  Google Scholar 

  8. Buyukozturk, F., Benneyan, J.C., and Carrier, R.L., J. Controlled Rel., 2010, vol. 142, p. 22. https://doi.org/10.1016/j.jconrel.2009.10.005

    Article  CAS  Google Scholar 

  9. Cho, E.C., Zhang, Q., and Xia, Y., Nat. Nanotechnol., 2011, vol. 6, p. 385. https://doi.org/10.1038/nnano.2011.58

  10. Rivas, C.J.M., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Rodríguez, S.A.G., Román, R.A., Fessi, H., and Elaissari, A., Int. J. Pharm., 2017, vol. 532, p. 66. https://doi.org/10.1016/j.ijpharm.2017.08.064

    Article  CAS  Google Scholar 

  11. Capes, J.S., and Cameron, R.E., Cryst. Eng. Comm., 2006, vol. 9. https://doi.org/10.1039/B613663J

  12. Lang, M., Grzesiak, A.L., and Matzger, A.J., J. Am. Chem. Soc., 2002, vol. 124, p. 14834. https://doi.org/10.1021/ja0286526

    Article  CAS  PubMed  Google Scholar 

  13. Songa, R-Q. and Cölfen, H., Cryst. Eng. Comm., 2011, vol. 13, p. 1249. https://doi.org/10.1039/C0CE00419G

    Article  Google Scholar 

  14. Lakshminarayanan, R., Valiyaveettil, S., and Loy, G. L., Cryst. Growth Des., 2003, vol. 3, p. 953. https://doi.org/10.1021/cg034022j

    Article  CAS  Google Scholar 

  15. Erdemir, D., Lee, A.Y., and Myerson, A.S., Accounts Chem. Res., 2009, vol. 42, p. 621. https://doi.org/10.1021/ar800217x

    Article  CAS  Google Scholar 

  16. Manoli, F., Kanakis, J., Malkaj, P., and Dalas, E., J. Cryst. Growth., 2002, vols. 236, p. 363. https://doi.org/10.1016/S0022-0248(01)02164-9

    Article  CAS  Google Scholar 

  17. Zhang, T.H. and Liu, X.Y., Ang. Chem. Int. Ed., 2009, vol. 48, p. 1308. https://doi.org/10.1002/anie.200804743

    Article  CAS  Google Scholar 

  18. Anwar, J., Boateng, P.K., Tamaki, R., and Odedra, S., Ang. Chem. Int. Ed., 2009, vol. 48, p. 1596. https://doi.org/10.1002/anie.200804553

    Article  CAS  Google Scholar 

  19. Mo, Y., Dang, L., and Wei, H., Ind. Eng. Chem. Res., 2011, vol. 50, p. 10385. https://doi.org/10.1021/ie102152d

    Article  CAS  Google Scholar 

  20. Lee, E.H., Byrn, S.R., and Carvajal, M.T., Pharm. Res., 2006, vol. 23, p. 2375. https://doi.org/10.1007/s11095-006-9045-y

    Article  CAS  PubMed  Google Scholar 

  21. Merza, M.Y. and El-Bermani, M.F., Spectrosc. Spect. Anal., 2004, vol. 24, p. 647. https://doi.org/10.1016/j.saa.2003.09.008

    Article  CAS  Google Scholar 

  22. Munns, A.R.I. and Tollin, P., Acta Crystallogr., Sect. B. 1970, vol. 26, p. 1101-1113. https://doi.org/10.1107/s0567740870003679

  23. Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilak, D., and Spackman, M.A., Crystal Explorer, Version 3.1, Australia: University of Western, 2012.

  24. Spackman, M.A. and Jayatilaka, D., Cryst. Eng. Comm., 2009, vol. 11, p. 19. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  25. Sheldrick, G.M., Acta Cryst., Sect. A., 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  26. Guo, M., Wang, K., Qiao, N., Fabian, L., Sadiq, G., and Li, M., Mol. Pharm., 2017, vol. 14, p. 4583. https://doi.org/10.1021/acs.molpharmaceut.7b00712

  27. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2008, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  28. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., Streek, J., and Wood, P.A., J. Appl. Crystallogr., 2008, vol. 41, p. 466. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  29. Jasani, M.S., Kale, D.P., Singh, I.P., and Bansal, A.K., Mol. Pharmaceutics., 2018, vol. 16, p. 151. https://doi.org/10.1021/acs.molpharmaceut.8b00923

    Article  CAS  Google Scholar 

  30. Tao, Q., Chen, J.-M., Ma, L., and Lu, T.-B., Cryst. Growth Des., 2012, vol. 12, p. 3144. doi 10.1021/cg300327x

    Article  CAS  Google Scholar 

  31. Liang, C., Sun, W., He, H., Zhang, B., Ling, C., Wang, B., Huang, T., Hou, B., and Guo, Y., Int. J. Nanomed., 2017, vol. 13, p., 209. https://doi.org/10.2147/IJN.S148142

  32. Wang, J., Jia, L., Kuang, Z., Wu, T., Hong, Y., Chen, X., Leung, W.K., Xia, J., and Cheng, B., Plos One, 2014, vol. 9, p. e98885. https://doi.org/10.1371/journal.pone.0098885

Download references

Funding

This work was supported by Joint Guidance Project of Natural Science Foundation of Heilongjiang Province (grant no. LH2019H059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Zhang.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.N., Liu, Y.L., Liu, L.X. et al. Preparation of Single Crystal of Inosine Induced by Sulfosalicylic Acid. Russ J Gen Chem 90, 1968–1973 (2020). https://doi.org/10.1134/S1070363220100205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100205

Keywords:

Navigation