Skip to main content
Log in

Tris(2-methoxy-5-chlorophenyl)antimony: Synthesis and Oxidative Addition Reactions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of 2-methoxy-5-chlorophenyllithium with SbCl3 (3 : 1) in diethyl ether has afforded tris(2-methoxy-5-chlorophenyl)antimony, which has been crystallized from benzene as solvate. Treatment of the solvate with bromine in chloroform has led to the formation of tris(2-methoxy-5-chlorophenyl)antimony dibromide, which has been isolated from benzene as solvate as well. The product of a similar reaction with chlorine, tris(2-methoxy-5-chlorophenyl)antimony dichloride, has been also obtained via oxidation of tris(2-methoxy-5-chlorophenyl)antimony with copper dichloride in acetone. The structural features of the obtained compounds have been established by means of single-crystal X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kocheshkov, K.A., Skoldinov, A.P., and Zemlyanskii, N.N., Metody elementoorganicheskoi khimii. Sur’ma, vismut (Methods of Organoelement Chemistry. Antimony, Bismuth), Moscow: Nauka, 1976.

  2. Onishi, K., Douke, M., Nakamura, T., Ochiai, Y., Kakusawa, N., Yasuike, S., Kurita, J., Yamamoto, C., Kawahata, M., Yamaguchi, K., and Yagura, T., J. Inorg. Biochem., 2012, vol. 117, p. 77. https://doi.org/10.1016/j.jinorgbio.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  3. Copolovici, D., Isaia, F., Breunig, H.J., Rat, C.I., and Silvestru, C., RSC Adv., 2014, vol. 4, p. 26569. https://doi.org/10.1039/C4RA03482A

    Article  Google Scholar 

  4. Chirca, I., Soran, A., Silvestru, A., and Silvestru, C., Rev. Roum. Chim., 2015, vol. 60, p. 643.

    Google Scholar 

  5. Copolovici, D., Bojan, V.R., Rat, C.I., Silvestru, A., Breunig, H.J., and Silvestru, C., Dalton Trans., 2010, vol. 39, p. 6410. https://doi.org/10.1039/C003318A

    Article  CAS  PubMed  Google Scholar 

  6. Okajima, S., Yasuike, S., Kakusawa, N., Osada, A., Yamaguchi, K., Seki, H., and Kurita, J., J. Organomet. Chem., 2002, vol. 656, p. 234. https://doi.org/10.1016/S0022-328X(02)01622-4

    Article  CAS  Google Scholar 

  7. Yamamichi, H., Matsukawa, S., Kojima, S., Ando, K., and Yamamoto, Y., Heteroatom Chem., 2011, vol. 22, p. 553. https://doi.org/10.1002/hc.20721

    Article  CAS  Google Scholar 

  8. Reznicek, T., Dostal, L., Ruzicka, A., Vinklarek, J., Rezacova, M., and Jambor, R., Appl. Organomet. Chem., 2012, vol. 26, p. 237. https://doi.org/10.1002/aoc.2845

    Article  CAS  Google Scholar 

  9. Obata, T., Matsumura, M., Kawahata, M., Hoshino, S., Yamada, M., Murata, Y., Kakusawa, N., Yamaguchi, K., Tanaka, M., and Yasuike, S., J. Organomet. Chem., 2016, vol. 807, p. 17. https://doi.org/10.1016/j.jorganchem.2016.02.008

    Article  CAS  Google Scholar 

  10. Matano, Y., Nomura, H., Hisanaga, T., Nakano, H., Shiro, M., and Imahori, H., Organometallics, 2004, vol. 23, p. 5471. https://doi.org/10.1021/om0494115

    Article  CAS  Google Scholar 

  11. Sharutina, O.K., Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, p. 1491. https://doi.org/10.1134/S0036023615120219

    Article  CAS  Google Scholar 

  12. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., Chagarova, O.V., and Zelevets, L.E., Russ. Coord. Chem., 2011, vol. 37, no. 10, p. 781. https://doi.org/10.1134/S1070328411090089

    Article  CAS  Google Scholar 

  13. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., and Chagarova, O.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 10, p. 2102. https://doi.org/10.1134/S1070363211100100

    Article  CAS  Google Scholar 

  14. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., and Chagarova, O.V., Russ. J. Inorg. Chem., 2011, vol. 56, no. 10, p. 1561. https://doi.org/10.1134/S0036023611100196

    Article  CAS  Google Scholar 

  15. Hirai, M. and Gabbai, F.P., Angew. Chem. Int. Ed., 2015, vol. 54, p. 1205. https://doi.org/10.1002/anie.201410085

    Article  CAS  Google Scholar 

  16. Matano, Y., Nomura, H., and Suzuki, H., Inorg. Chem., 2000, vol. 39, p. 1340. https://doi.org/10.1021/ic991120e

    Article  CAS  PubMed  Google Scholar 

  17. Matano, Y., Nomura, H., and Suzuki, H., Inorg. Chem., 2002, vol. 41, p. 1940. https://doi.org/10.1021/ic0110575

    Article  CAS  PubMed  Google Scholar 

  18. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Chagarova, O.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 10, p. 1665. https://doi.org/10.1134/S1070363212100064

    Article  CAS  Google Scholar 

  19. Sharutin, V.V., Sharutina, O.K., and Senchurin, V.S., Russ. J. Inorg. Chem., 2014, vol. 59, no. 4, p. 326. https://doi.org/10.1134/S0036023614040202

    Article  CAS  Google Scholar 

  20. Yin, H., Quan, L., ad Li, L., Pharmaceuticals., 2008, vol. 11, p. 1121. https://doi.org/10.1016/j.inoche.2008.06.017

    Article  CAS  Google Scholar 

  21. Shu, W., Liu, D., Huang, K., Wang, K., and Li, Y., Trans. Nonferrous Met. Soc. China, 1992, vol. 2, no. 2, p. 32

    CAS  Google Scholar 

  22. Domagala, M., Huber, F., and Preut, H., Z. Anorg. Allg. Chem., 1989, vol. 574, p. 130. https://doi.org/10.1002/zaac.655740114

    Article  CAS  Google Scholar 

  23. Grigsby, E.W.J., Hart, R.D., Raston, C.L., Skelton, B.W., and White, A.H., Aust. J. Chem., 1997, vol. 50, p. 675.

    Article  Google Scholar 

  24. Sobolev, A.N., Romm, I.P., Belskii, V.K., and Gur’yanova, E.N., J. Organomet. Chem., 1979, vol. 179, p. 153. https://doi.org/10.1016/S0022-328X(00)95217-3

    Article  CAS  Google Scholar 

  25. Begley, M.J. and Sowerby, D.B., Acta Crystallogr. (C), 1993, vol. 49, p. 1044. https://doi.org/10.1107/S0108270192012836

    Article  Google Scholar 

  26. Desiraju, G.R., Ho, P.S., Kloo, L., Legon, A.C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G., and Rissanen, K., Pure Appl. Chem., 2013, vol. 85, p. 1711. https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  27. Bruker (1998). SMART and SAINT-Plus. Versions, 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

  28. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

  29. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K. Tris(2-methoxy-5-chlorophenyl)antimony: Synthesis and Oxidative Addition Reactions. Russ J Gen Chem 90, 1901–1905 (2020). https://doi.org/10.1134/S1070363220100138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100138

Keywords:

Navigation